3.520 \(\int \frac {(d+e x+f \sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}})^n}{\sqrt {a g+\frac {2 d e g x}{f^2}+\frac {e^2 g x^2}{f^2}}} \, dx\)

Optimal. Leaf size=93 \[ \frac {f \sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}} \left (f \sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}}+d+e x\right )^n}{e n \sqrt {a g+\frac {2 d e g x}{f^2}+\frac {e^2 g x^2}{f^2}}} \]

[Out]

f*(a+2*d*e*x/f^2+e^2*x^2/f^2)^(1/2)*(d+e*x+f*(a+2*d*e*x/f^2+e^2*x^2/f^2)^(1/2))^n/e/n/(a*g+2*d*e*g*x/f^2+e^2*g
*x^2/f^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.53, antiderivative size = 93, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 62, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {2125, 2121, 12, 30} \[ \frac {f \sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}} \left (f \sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}}+d+e x\right )^n}{e n \sqrt {a g+\frac {2 d e g x}{f^2}+\frac {e^2 g x^2}{f^2}}} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x + f*Sqrt[a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2])^n/Sqrt[a*g + (2*d*e*g*x)/f^2 + (e^2*g*x^2)/f^2],x]

[Out]

(f*Sqrt[a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2]*(d + e*x + f*Sqrt[a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2])^n)/(e*n*Sqrt[
a*g + (2*d*e*g*x)/f^2 + (e^2*g*x^2)/f^2])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 2121

Int[((g_.) + (h_.)*(x_) + (i_.)*(x_)^2)^(m_.)*((d_.) + (e_.)*(x_) + (f_.)*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)
^2])^(n_.), x_Symbol] :> Dist[(2*(i/c)^m)/f^(2*m), Subst[Int[(x^n*(d^2*e - (b*d - a*e)*f^2 - (2*d*e - b*f^2)*x
 + e*x^2)^(2*m + 1))/(-2*d*e + b*f^2 + 2*e*x)^(2*(m + 1)), x], x, d + e*x + f*Sqrt[a + b*x + c*x^2]], x] /; Fr
eeQ[{a, b, c, d, e, f, g, h, i, n}, x] && EqQ[e^2 - c*f^2, 0] && EqQ[c*g - a*i, 0] && EqQ[c*h - b*i, 0] && Int
egerQ[2*m] && (IntegerQ[m] || GtQ[i/c, 0])

Rule 2125

Int[((g_.) + (h_.)*(x_) + (i_.)*(x_)^2)^(m_.)*((d_.) + (e_.)*(x_) + (f_.)*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)
^2])^(n_.), x_Symbol] :> Dist[((i/c)^(m + 1/2)*Sqrt[a + b*x + c*x^2])/Sqrt[g + h*x + i*x^2], Int[(a + b*x + c*
x^2)^m*(d + e*x + f*Sqrt[a + b*x + c*x^2])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, i, n}, x] && EqQ[e^2 -
c*f^2, 0] && EqQ[c*g - a*i, 0] && EqQ[c*h - b*i, 0] && ILtQ[m - 1/2, 0] &&  !GtQ[i/c, 0]

Rubi steps

\begin {align*} \int \frac {\left (d+e x+f \sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}}\right )^n}{\sqrt {a g+\frac {2 d e g x}{f^2}+\frac {e^2 g x^2}{f^2}}} \, dx &=\frac {\sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}} \int \frac {\left (d+e x+f \sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}}\right )^n}{\sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}}} \, dx}{\sqrt {a g+\frac {2 d e g x}{f^2}+\frac {e^2 g x^2}{f^2}}}\\ &=\frac {\left (2 f \sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}}\right ) \operatorname {Subst}\left (\int \frac {x^{-1+n}}{2 e} \, dx,x,d+e x+f \sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}}\right )}{\sqrt {a g+\frac {2 d e g x}{f^2}+\frac {e^2 g x^2}{f^2}}}\\ &=\frac {\left (f \sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}}\right ) \operatorname {Subst}\left (\int x^{-1+n} \, dx,x,d+e x+f \sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}}\right )}{e \sqrt {a g+\frac {2 d e g x}{f^2}+\frac {e^2 g x^2}{f^2}}}\\ &=\frac {f \sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}} \left (d+e x+f \sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}}\right )^n}{e n \sqrt {a g+\frac {2 d e g x}{f^2}+\frac {e^2 g x^2}{f^2}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.10, size = 76, normalized size = 0.82 \[ \frac {f \sqrt {a+\frac {e x (2 d+e x)}{f^2}} \left (f \sqrt {a+\frac {e x (2 d+e x)}{f^2}}+d+e x\right )^n}{e n \sqrt {g \left (a+\frac {e x (2 d+e x)}{f^2}\right )}} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x + f*Sqrt[a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2])^n/Sqrt[a*g + (2*d*e*g*x)/f^2 + (e^2*g*x^2)/f^2
],x]

[Out]

(f*Sqrt[a + (e*x*(2*d + e*x))/f^2]*(d + e*x + f*Sqrt[a + (e*x*(2*d + e*x))/f^2])^n)/(e*n*Sqrt[g*(a + (e*x*(2*d
 + e*x))/f^2)])

________________________________________________________________________________________

fricas [A]  time = 0.42, size = 117, normalized size = 1.26 \[ \frac {{\left (e x + f \sqrt {\frac {e^{2} x^{2} + a f^{2} + 2 \, d e x}{f^{2}}} + d\right )}^{n} f^{3} \sqrt {\frac {e^{2} g x^{2} + a f^{2} g + 2 \, d e g x}{f^{2}}} \sqrt {\frac {e^{2} x^{2} + a f^{2} + 2 \, d e x}{f^{2}}}}{e^{3} g n x^{2} + a e f^{2} g n + 2 \, d e^{2} g n x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+e*x+f*(a+2*d*e*x/f^2+e^2*x^2/f^2)^(1/2))^n/(a*g+2*d*e*g*x/f^2+e^2*g*x^2/f^2)^(1/2),x, algorithm="
fricas")

[Out]

(e*x + f*sqrt((e^2*x^2 + a*f^2 + 2*d*e*x)/f^2) + d)^n*f^3*sqrt((e^2*g*x^2 + a*f^2*g + 2*d*e*g*x)/f^2)*sqrt((e^
2*x^2 + a*f^2 + 2*d*e*x)/f^2)/(e^3*g*n*x^2 + a*e*f^2*g*n + 2*d*e^2*g*n*x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (e x + \sqrt {\frac {e^{2} x^{2}}{f^{2}} + a + \frac {2 \, d e x}{f^{2}}} f + d\right )}^{n}}{\sqrt {\frac {e^{2} g x^{2}}{f^{2}} + a g + \frac {2 \, d e g x}{f^{2}}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+e*x+f*(a+2*d*e*x/f^2+e^2*x^2/f^2)^(1/2))^n/(a*g+2*d*e*g*x/f^2+e^2*g*x^2/f^2)^(1/2),x, algorithm="
giac")

[Out]

integrate((e*x + sqrt(e^2*x^2/f^2 + a + 2*d*e*x/f^2)*f + d)^n/sqrt(e^2*g*x^2/f^2 + a*g + 2*d*e*g*x/f^2), x)

________________________________________________________________________________________

maple [F]  time = 0.11, size = 0, normalized size = 0.00 \[ \int \frac {\left (e x +d +\sqrt {\frac {e^{2} x^{2}}{f^{2}}+a +\frac {2 d e x}{f^{2}}}\, f \right )^{n}}{\sqrt {\frac {e^{2} g \,x^{2}}{f^{2}}+a g +\frac {2 d e g x}{f^{2}}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d+(e^2/f^2*x^2+a+2*d*e/f^2*x)^(1/2)*f)^n/(e^2/f^2*g*x^2+a*g+2*d*e/f^2*g*x)^(1/2),x)

[Out]

int((e*x+d+(e^2/f^2*x^2+a+2*d*e/f^2*x)^(1/2)*f)^n/(e^2/f^2*g*x^2+a*g+2*d*e/f^2*g*x)^(1/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (e x + \sqrt {\frac {e^{2} x^{2}}{f^{2}} + a + \frac {2 \, d e x}{f^{2}}} f + d\right )}^{n}}{\sqrt {\frac {e^{2} g x^{2}}{f^{2}} + a g + \frac {2 \, d e g x}{f^{2}}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+e*x+f*(a+2*d*e*x/f^2+e^2*x^2/f^2)^(1/2))^n/(a*g+2*d*e*g*x/f^2+e^2*g*x^2/f^2)^(1/2),x, algorithm="
maxima")

[Out]

integrate((e*x + sqrt(e^2*x^2/f^2 + a + 2*d*e*x/f^2)*f + d)^n/sqrt(e^2*g*x^2/f^2 + a*g + 2*d*e*g*x/f^2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (d+f\,\sqrt {a+\frac {e^2\,x^2}{f^2}+\frac {2\,d\,e\,x}{f^2}}+e\,x\right )}^n}{\sqrt {a\,g+\frac {e^2\,g\,x^2}{f^2}+\frac {2\,d\,e\,g\,x}{f^2}}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + f*(a + (e^2*x^2)/f^2 + (2*d*e*x)/f^2)^(1/2) + e*x)^n/(a*g + (e^2*g*x^2)/f^2 + (2*d*e*g*x)/f^2)^(1/2),
x)

[Out]

int((d + f*(a + (e^2*x^2)/f^2 + (2*d*e*x)/f^2)^(1/2) + e*x)^n/(a*g + (e^2*g*x^2)/f^2 + (2*d*e*g*x)/f^2)^(1/2),
 x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (d + e x + f \sqrt {a + \frac {2 d e x}{f^{2}} + \frac {e^{2} x^{2}}{f^{2}}}\right )^{n}}{\sqrt {g \left (a + \frac {2 d e x}{f^{2}} + \frac {e^{2} x^{2}}{f^{2}}\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+e*x+f*(a+2*d*e*x/f**2+e**2*x**2/f**2)**(1/2))**n/(a*g+2*d*e*g*x/f**2+e**2*g*x**2/f**2)**(1/2),x)

[Out]

Integral((d + e*x + f*sqrt(a + 2*d*e*x/f**2 + e**2*x**2/f**2))**n/sqrt(g*(a + 2*d*e*x/f**2 + e**2*x**2/f**2)),
 x)

________________________________________________________________________________________