3.516 \(\int \frac {(d+e x+f \sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}})^n}{\sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}}} \, dx\)

Optimal. Leaf size=41 \[ \frac {f \left (f \sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}}+d+e x\right )^n}{e n} \]

[Out]

f*(d+e*x+f*(a+2*d*e*x/f^2+e^2*x^2/f^2)^(1/2))^n/e/n

________________________________________________________________________________________

Rubi [A]  time = 0.25, antiderivative size = 41, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 58, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.052, Rules used = {2121, 12, 30} \[ \frac {f \left (f \sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}}+d+e x\right )^n}{e n} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x + f*Sqrt[a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2])^n/Sqrt[a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2],x]

[Out]

(f*(d + e*x + f*Sqrt[a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2])^n)/(e*n)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 2121

Int[((g_.) + (h_.)*(x_) + (i_.)*(x_)^2)^(m_.)*((d_.) + (e_.)*(x_) + (f_.)*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)
^2])^(n_.), x_Symbol] :> Dist[(2*(i/c)^m)/f^(2*m), Subst[Int[(x^n*(d^2*e - (b*d - a*e)*f^2 - (2*d*e - b*f^2)*x
 + e*x^2)^(2*m + 1))/(-2*d*e + b*f^2 + 2*e*x)^(2*(m + 1)), x], x, d + e*x + f*Sqrt[a + b*x + c*x^2]], x] /; Fr
eeQ[{a, b, c, d, e, f, g, h, i, n}, x] && EqQ[e^2 - c*f^2, 0] && EqQ[c*g - a*i, 0] && EqQ[c*h - b*i, 0] && Int
egerQ[2*m] && (IntegerQ[m] || GtQ[i/c, 0])

Rubi steps

\begin {align*} \int \frac {\left (d+e x+f \sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}}\right )^n}{\sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}}} \, dx &=(2 f) \operatorname {Subst}\left (\int \frac {x^{-1+n}}{2 e} \, dx,x,d+e x+f \sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}}\right )\\ &=\frac {f \operatorname {Subst}\left (\int x^{-1+n} \, dx,x,d+e x+f \sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}}\right )}{e}\\ &=\frac {f \left (d+e x+f \sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}}\right )^n}{e n}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.08, size = 36, normalized size = 0.88 \[ \frac {f \left (f \sqrt {a+\frac {e x (2 d+e x)}{f^2}}+d+e x\right )^n}{e n} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x + f*Sqrt[a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2])^n/Sqrt[a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2],x]

[Out]

(f*(d + e*x + f*Sqrt[a + (e*x*(2*d + e*x))/f^2])^n)/(e*n)

________________________________________________________________________________________

fricas [A]  time = 0.46, size = 41, normalized size = 1.00 \[ \frac {{\left (e x + f \sqrt {\frac {e^{2} x^{2} + a f^{2} + 2 \, d e x}{f^{2}}} + d\right )}^{n} f}{e n} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+e*x+f*(a+2*d*e*x/f^2+e^2*x^2/f^2)^(1/2))^n/(a+2*d*e*x/f^2+e^2*x^2/f^2)^(1/2),x, algorithm="fricas
")

[Out]

(e*x + f*sqrt((e^2*x^2 + a*f^2 + 2*d*e*x)/f^2) + d)^n*f/(e*n)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (e x + \sqrt {\frac {e^{2} x^{2}}{f^{2}} + a + \frac {2 \, d e x}{f^{2}}} f + d\right )}^{n}}{\sqrt {\frac {e^{2} x^{2}}{f^{2}} + a + \frac {2 \, d e x}{f^{2}}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+e*x+f*(a+2*d*e*x/f^2+e^2*x^2/f^2)^(1/2))^n/(a+2*d*e*x/f^2+e^2*x^2/f^2)^(1/2),x, algorithm="giac")

[Out]

integrate((e*x + sqrt(e^2*x^2/f^2 + a + 2*d*e*x/f^2)*f + d)^n/sqrt(e^2*x^2/f^2 + a + 2*d*e*x/f^2), x)

________________________________________________________________________________________

maple [F]  time = 0.11, size = 0, normalized size = 0.00 \[ \int \frac {\left (e x +d +\sqrt {\frac {e^{2} x^{2}}{f^{2}}+a +\frac {2 d e x}{f^{2}}}\, f \right )^{n}}{\sqrt {\frac {e^{2} x^{2}}{f^{2}}+a +\frac {2 d e x}{f^{2}}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d+(e^2/f^2*x^2+a+2*d*e/f^2*x)^(1/2)*f)^n/(e^2/f^2*x^2+a+2*d*e/f^2*x)^(1/2),x)

[Out]

int((e*x+d+(e^2/f^2*x^2+a+2*d*e/f^2*x)^(1/2)*f)^n/(e^2/f^2*x^2+a+2*d*e/f^2*x)^(1/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (e x + \sqrt {\frac {e^{2} x^{2}}{f^{2}} + a + \frac {2 \, d e x}{f^{2}}} f + d\right )}^{n}}{\sqrt {\frac {e^{2} x^{2}}{f^{2}} + a + \frac {2 \, d e x}{f^{2}}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+e*x+f*(a+2*d*e*x/f^2+e^2*x^2/f^2)^(1/2))^n/(a+2*d*e*x/f^2+e^2*x^2/f^2)^(1/2),x, algorithm="maxima
")

[Out]

integrate((e*x + sqrt(e^2*x^2/f^2 + a + 2*d*e*x/f^2)*f + d)^n/sqrt(e^2*x^2/f^2 + a + 2*d*e*x/f^2), x)

________________________________________________________________________________________

mupad [B]  time = 3.08, size = 41, normalized size = 1.00 \[ \frac {f\,{\left (d+e\,x+f\,\sqrt {\frac {e^2\,x^2+2\,d\,e\,x+a\,f^2}{f^2}}\right )}^n}{e\,n} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + f*(a + (e^2*x^2)/f^2 + (2*d*e*x)/f^2)^(1/2) + e*x)^n/(a + (e^2*x^2)/f^2 + (2*d*e*x)/f^2)^(1/2),x)

[Out]

(f*(d + e*x + f*((a*f^2 + e^2*x^2 + 2*d*e*x)/f^2)^(1/2))^n)/(e*n)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (d + e x + f \sqrt {a + \frac {2 d e x}{f^{2}} + \frac {e^{2} x^{2}}{f^{2}}}\right )^{n}}{\sqrt {a + \frac {2 d e x}{f^{2}} + \frac {e^{2} x^{2}}{f^{2}}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+e*x+f*(a+2*d*e*x/f**2+e**2*x**2/f**2)**(1/2))**n/(a+2*d*e*x/f**2+e**2*x**2/f**2)**(1/2),x)

[Out]

Integral((d + e*x + f*sqrt(a + 2*d*e*x/f**2 + e**2*x**2/f**2))**n/sqrt(a + 2*d*e*x/f**2 + e**2*x**2/f**2), x)

________________________________________________________________________________________