3.511 \(\int \frac {(d+e x+f \sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}})^n}{(a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2})^2} \, dx\)

Optimal. Leaf size=122 \[ -\frac {8 f^4 \left (f \sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}}+d+e x\right )^{n+3} \, _2F_1\left (3,\frac {n+3}{2};\frac {n+5}{2};\frac {\left (d+e x+f \sqrt {\frac {e^2 x^2}{f^2}+\frac {2 d e x}{f^2}+a}\right )^2}{d^2-a f^2}\right )}{e (n+3) \left (d^2-a f^2\right )^3} \]

[Out]

-8*f^4*hypergeom([3, 3/2+1/2*n],[5/2+1/2*n],(d+e*x+f*(a+2*d*e*x/f^2+e^2*x^2/f^2)^(1/2))^2/(-a*f^2+d^2))*(d+e*x
+f*(a+2*d*e*x/f^2+e^2*x^2/f^2)^(1/2))^(3+n)/e/(-a*f^2+d^2)^3/(3+n)

________________________________________________________________________________________

Rubi [A]  time = 0.27, antiderivative size = 122, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 56, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.054, Rules used = {2121, 12, 364} \[ -\frac {8 f^4 \left (f \sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}}+d+e x\right )^{n+3} \, _2F_1\left (3,\frac {n+3}{2};\frac {n+5}{2};\frac {\left (d+e x+f \sqrt {\frac {e^2 x^2}{f^2}+\frac {2 d e x}{f^2}+a}\right )^2}{d^2-a f^2}\right )}{e (n+3) \left (d^2-a f^2\right )^3} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x + f*Sqrt[a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2])^n/(a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2)^2,x]

[Out]

(-8*f^4*(d + e*x + f*Sqrt[a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2])^(3 + n)*Hypergeometric2F1[3, (3 + n)/2, (5 + n)/
2, (d + e*x + f*Sqrt[a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2])^2/(d^2 - a*f^2)])/(e*(d^2 - a*f^2)^3*(3 + n))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rule 2121

Int[((g_.) + (h_.)*(x_) + (i_.)*(x_)^2)^(m_.)*((d_.) + (e_.)*(x_) + (f_.)*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)
^2])^(n_.), x_Symbol] :> Dist[(2*(i/c)^m)/f^(2*m), Subst[Int[(x^n*(d^2*e - (b*d - a*e)*f^2 - (2*d*e - b*f^2)*x
 + e*x^2)^(2*m + 1))/(-2*d*e + b*f^2 + 2*e*x)^(2*(m + 1)), x], x, d + e*x + f*Sqrt[a + b*x + c*x^2]], x] /; Fr
eeQ[{a, b, c, d, e, f, g, h, i, n}, x] && EqQ[e^2 - c*f^2, 0] && EqQ[c*g - a*i, 0] && EqQ[c*h - b*i, 0] && Int
egerQ[2*m] && (IntegerQ[m] || GtQ[i/c, 0])

Rubi steps

\begin {align*} \int \frac {\left (d+e x+f \sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}}\right )^n}{\left (a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}\right )^2} \, dx &=\left (2 f^4\right ) \operatorname {Subst}\left (\int \frac {4 e^2 x^{2+n}}{\left (d^2 e-\left (-a e+\frac {2 d^2 e}{f^2}\right ) f^2+e x^2\right )^3} \, dx,x,d+e x+f \sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}}\right )\\ &=\left (8 e^2 f^4\right ) \operatorname {Subst}\left (\int \frac {x^{2+n}}{\left (d^2 e-\left (-a e+\frac {2 d^2 e}{f^2}\right ) f^2+e x^2\right )^3} \, dx,x,d+e x+f \sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}}\right )\\ &=-\frac {8 f^4 \left (d+e x+f \sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}}\right )^{3+n} \, _2F_1\left (3,\frac {3+n}{2};\frac {5+n}{2};\frac {\left (d+e x+f \sqrt {a+\frac {2 d e x}{f^2}+\frac {e^2 x^2}{f^2}}\right )^2}{d^2-a f^2}\right )}{e \left (d^2-a f^2\right )^3 (3+n)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.19, size = 112, normalized size = 0.92 \[ -\frac {8 f^4 \left (f \sqrt {a+\frac {e x (2 d+e x)}{f^2}}+d+e x\right )^{n+3} \, _2F_1\left (3,\frac {n+3}{2};\frac {n+5}{2};\frac {\left (d+e x+f \sqrt {a+\frac {e x (2 d+e x)}{f^2}}\right )^2}{d^2-a f^2}\right )}{e (n+3) \left (d^2-a f^2\right )^3} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x + f*Sqrt[a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2])^n/(a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2)^2,x]

[Out]

(-8*f^4*(d + e*x + f*Sqrt[a + (e*x*(2*d + e*x))/f^2])^(3 + n)*Hypergeometric2F1[3, (3 + n)/2, (5 + n)/2, (d +
e*x + f*Sqrt[a + (e*x*(2*d + e*x))/f^2])^2/(d^2 - a*f^2)])/(e*(d^2 - a*f^2)^3*(3 + n))

________________________________________________________________________________________

fricas [F]  time = 0.47, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (e x + f \sqrt {\frac {e^{2} x^{2} + a f^{2} + 2 \, d e x}{f^{2}}} + d\right )}^{n} f^{4}}{e^{4} x^{4} + 4 \, d e^{3} x^{3} + a^{2} f^{4} + 4 \, a d e f^{2} x + 2 \, {\left (a e^{2} f^{2} + 2 \, d^{2} e^{2}\right )} x^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+e*x+f*(a+2*d*e*x/f^2+e^2*x^2/f^2)^(1/2))^n/(a+2*d*e*x/f^2+e^2*x^2/f^2)^2,x, algorithm="fricas")

[Out]

integral((e*x + f*sqrt((e^2*x^2 + a*f^2 + 2*d*e*x)/f^2) + d)^n*f^4/(e^4*x^4 + 4*d*e^3*x^3 + a^2*f^4 + 4*a*d*e*
f^2*x + 2*(a*e^2*f^2 + 2*d^2*e^2)*x^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (e x + \sqrt {\frac {e^{2} x^{2}}{f^{2}} + a + \frac {2 \, d e x}{f^{2}}} f + d\right )}^{n}}{{\left (\frac {e^{2} x^{2}}{f^{2}} + a + \frac {2 \, d e x}{f^{2}}\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+e*x+f*(a+2*d*e*x/f^2+e^2*x^2/f^2)^(1/2))^n/(a+2*d*e*x/f^2+e^2*x^2/f^2)^2,x, algorithm="giac")

[Out]

integrate((e*x + sqrt(e^2*x^2/f^2 + a + 2*d*e*x/f^2)*f + d)^n/(e^2*x^2/f^2 + a + 2*d*e*x/f^2)^2, x)

________________________________________________________________________________________

maple [F]  time = 0.11, size = 0, normalized size = 0.00 \[ \int \frac {\left (e x +d +\sqrt {\frac {e^{2} x^{2}}{f^{2}}+a +\frac {2 d e x}{f^{2}}}\, f \right )^{n}}{\left (\frac {e^{2} x^{2}}{f^{2}}+a +\frac {2 d e x}{f^{2}}\right )^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d+(e^2/f^2*x^2+a+2*d*e/f^2*x)^(1/2)*f)^n/(e^2/f^2*x^2+a+2*d*e/f^2*x)^2,x)

[Out]

int((e*x+d+(e^2/f^2*x^2+a+2*d*e/f^2*x)^(1/2)*f)^n/(e^2/f^2*x^2+a+2*d*e/f^2*x)^2,x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (e x + \sqrt {\frac {e^{2} x^{2}}{f^{2}} + a + \frac {2 \, d e x}{f^{2}}} f + d\right )}^{n}}{{\left (\frac {e^{2} x^{2}}{f^{2}} + a + \frac {2 \, d e x}{f^{2}}\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+e*x+f*(a+2*d*e*x/f^2+e^2*x^2/f^2)^(1/2))^n/(a+2*d*e*x/f^2+e^2*x^2/f^2)^2,x, algorithm="maxima")

[Out]

integrate((e*x + sqrt(e^2*x^2/f^2 + a + 2*d*e*x/f^2)*f + d)^n/(e^2*x^2/f^2 + a + 2*d*e*x/f^2)^2, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (d+f\,\sqrt {a+\frac {e^2\,x^2}{f^2}+\frac {2\,d\,e\,x}{f^2}}+e\,x\right )}^n}{{\left (a+\frac {e^2\,x^2}{f^2}+\frac {2\,d\,e\,x}{f^2}\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + f*(a + (e^2*x^2)/f^2 + (2*d*e*x)/f^2)^(1/2) + e*x)^n/(a + (e^2*x^2)/f^2 + (2*d*e*x)/f^2)^2,x)

[Out]

int((d + f*(a + (e^2*x^2)/f^2 + (2*d*e*x)/f^2)^(1/2) + e*x)^n/(a + (e^2*x^2)/f^2 + (2*d*e*x)/f^2)^2, x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+e*x+f*(a+2*d*e*x/f**2+e**2*x**2/f**2)**(1/2))**n/(a+2*d*e*x/f**2+e**2*x**2/f**2)**2,x)

[Out]

Timed out

________________________________________________________________________________________