3.434 \(\int \frac {x}{(\sqrt {a+b x}+\sqrt {a+c x})^2} \, dx\)

Optimal. Leaf size=135 \[ -\frac {2 \sqrt {a+b x} \sqrt {a+c x}}{(b-c)^2}+\frac {2 a \log (x)}{(b-c)^2}+\frac {4 a \tanh ^{-1}\left (\frac {\sqrt {a+b x}}{\sqrt {a+c x}}\right )}{(b-c)^2}-\frac {2 a (b+c) \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+b x}}{\sqrt {b} \sqrt {a+c x}}\right )}{\sqrt {b} \sqrt {c} (b-c)^2}+\frac {x (b+c)}{(b-c)^2} \]

[Out]

(b+c)*x/(b-c)^2+4*a*arctanh((b*x+a)^(1/2)/(c*x+a)^(1/2))/(b-c)^2+2*a*ln(x)/(b-c)^2-2*a*(b+c)*arctanh(c^(1/2)*(
b*x+a)^(1/2)/b^(1/2)/(c*x+a)^(1/2))/(b-c)^2/b^(1/2)/c^(1/2)-2*(b*x+a)^(1/2)*(c*x+a)^(1/2)/(b-c)^2

________________________________________________________________________________________

Rubi [A]  time = 0.18, antiderivative size = 135, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {6690, 101, 157, 63, 217, 206, 93, 208} \[ -\frac {2 \sqrt {a+b x} \sqrt {a+c x}}{(b-c)^2}+\frac {2 a \log (x)}{(b-c)^2}+\frac {4 a \tanh ^{-1}\left (\frac {\sqrt {a+b x}}{\sqrt {a+c x}}\right )}{(b-c)^2}-\frac {2 a (b+c) \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+b x}}{\sqrt {b} \sqrt {a+c x}}\right )}{\sqrt {b} \sqrt {c} (b-c)^2}+\frac {x (b+c)}{(b-c)^2} \]

Antiderivative was successfully verified.

[In]

Int[x/(Sqrt[a + b*x] + Sqrt[a + c*x])^2,x]

[Out]

((b + c)*x)/(b - c)^2 - (2*Sqrt[a + b*x]*Sqrt[a + c*x])/(b - c)^2 + (4*a*ArcTanh[Sqrt[a + b*x]/Sqrt[a + c*x]])
/(b - c)^2 - (2*a*(b + c)*ArcTanh[(Sqrt[c]*Sqrt[a + b*x])/(Sqrt[b]*Sqrt[a + c*x])])/(Sqrt[b]*(b - c)^2*Sqrt[c]
) + (2*a*Log[x])/(b - c)^2

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 101

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a +
b*x)^m*(c + d*x)^n*(e + f*x)^(p + 1))/(f*(m + n + p + 1)), x] - Dist[1/(f*(m + n + p + 1)), Int[(a + b*x)^(m -
 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[c*m*(b*e - a*f) + a*n*(d*e - c*f) + (d*m*(b*e - a*f) + b*n*(d*e - c*f))
*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && GtQ[m, 0] && GtQ[n, 0] && NeQ[m + n + p + 1, 0] && (Integ
ersQ[2*m, 2*n, 2*p] || (IntegersQ[m, n + p] || IntegersQ[p, m + n]))

Rule 157

Int[(((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/((a_.) + (b_.)*(x_)), x_Symbol]
 :> Dist[h/b, Int[(c + d*x)^n*(e + f*x)^p, x], x] + Dist[(b*g - a*h)/b, Int[((c + d*x)^n*(e + f*x)^p)/(a + b*x
), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 6690

Int[(u_.)*((e_.)*Sqrt[(a_.) + (b_.)*(x_)^(n_.)] + (f_.)*Sqrt[(c_.) + (d_.)*(x_)^(n_.)])^(m_), x_Symbol] :> Dis
t[(b*e^2 - d*f^2)^m, Int[ExpandIntegrand[(u*x^(m*n))/(e*Sqrt[a + b*x^n] - f*Sqrt[c + d*x^n])^m, x], x], x] /;
FreeQ[{a, b, c, d, e, f, n}, x] && ILtQ[m, 0] && EqQ[a*e^2 - c*f^2, 0]

Rubi steps

\begin {align*} \int \frac {x}{\left (\sqrt {a+b x}+\sqrt {a+c x}\right )^2} \, dx &=\frac {\int \left (b \left (1+\frac {c}{b}\right )+\frac {2 a}{x}-\frac {2 \sqrt {a+b x} \sqrt {a+c x}}{x}\right ) \, dx}{(b-c)^2}\\ &=\frac {(b+c) x}{(b-c)^2}+\frac {2 a \log (x)}{(b-c)^2}-\frac {2 \int \frac {\sqrt {a+b x} \sqrt {a+c x}}{x} \, dx}{(b-c)^2}\\ &=\frac {(b+c) x}{(b-c)^2}-\frac {2 \sqrt {a+b x} \sqrt {a+c x}}{(b-c)^2}+\frac {2 a \log (x)}{(b-c)^2}+\frac {2 \int \frac {-a^2-\frac {1}{2} a (b+c) x}{x \sqrt {a+b x} \sqrt {a+c x}} \, dx}{(b-c)^2}\\ &=\frac {(b+c) x}{(b-c)^2}-\frac {2 \sqrt {a+b x} \sqrt {a+c x}}{(b-c)^2}+\frac {2 a \log (x)}{(b-c)^2}-\frac {\left (2 a^2\right ) \int \frac {1}{x \sqrt {a+b x} \sqrt {a+c x}} \, dx}{(b-c)^2}-\frac {(a (b+c)) \int \frac {1}{\sqrt {a+b x} \sqrt {a+c x}} \, dx}{(b-c)^2}\\ &=\frac {(b+c) x}{(b-c)^2}-\frac {2 \sqrt {a+b x} \sqrt {a+c x}}{(b-c)^2}+\frac {2 a \log (x)}{(b-c)^2}-\frac {\left (4 a^2\right ) \operatorname {Subst}\left (\int \frac {1}{-a+a x^2} \, dx,x,\frac {\sqrt {a+b x}}{\sqrt {a+c x}}\right )}{(b-c)^2}-\frac {(2 a (b+c)) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a-\frac {a c}{b}+\frac {c x^2}{b}}} \, dx,x,\sqrt {a+b x}\right )}{b (b-c)^2}\\ &=\frac {(b+c) x}{(b-c)^2}-\frac {2 \sqrt {a+b x} \sqrt {a+c x}}{(b-c)^2}+\frac {4 a \tanh ^{-1}\left (\frac {\sqrt {a+b x}}{\sqrt {a+c x}}\right )}{(b-c)^2}+\frac {2 a \log (x)}{(b-c)^2}-\frac {(2 a (b+c)) \operatorname {Subst}\left (\int \frac {1}{1-\frac {c x^2}{b}} \, dx,x,\frac {\sqrt {a+b x}}{\sqrt {a+c x}}\right )}{b (b-c)^2}\\ &=\frac {(b+c) x}{(b-c)^2}-\frac {2 \sqrt {a+b x} \sqrt {a+c x}}{(b-c)^2}+\frac {4 a \tanh ^{-1}\left (\frac {\sqrt {a+b x}}{\sqrt {a+c x}}\right )}{(b-c)^2}-\frac {2 a (b+c) \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+b x}}{\sqrt {b} \sqrt {a+c x}}\right )}{\sqrt {b} (b-c)^2 \sqrt {c}}+\frac {2 a \log (x)}{(b-c)^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.86, size = 195, normalized size = 1.44 \[ \frac {\frac {2 (b+c) \sqrt {a (b-c)} (a+c x) \sinh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+b x}}{\sqrt {a (b-c)}}\right )}{\sqrt {c} \sqrt {\frac {b (a+c x)}{a (b-c)}}}-(b-c) \left (-2 c x \sqrt {a+b x}+b x \sqrt {a+c x}+4 a \sqrt {a+c x} \tanh ^{-1}\left (\frac {\sqrt {a+b x}}{\sqrt {a+c x}}\right )-2 a \sqrt {a+b x}+c x \sqrt {a+c x}+2 a \log (x) \sqrt {a+c x}\right )}{(c-b)^3 \sqrt {a+c x}} \]

Antiderivative was successfully verified.

[In]

Integrate[x/(Sqrt[a + b*x] + Sqrt[a + c*x])^2,x]

[Out]

((2*Sqrt[a*(b - c)]*(b + c)*(a + c*x)*ArcSinh[(Sqrt[c]*Sqrt[a + b*x])/Sqrt[a*(b - c)]])/(Sqrt[c]*Sqrt[(b*(a +
c*x))/(a*(b - c))]) - (b - c)*(-2*a*Sqrt[a + b*x] - 2*c*x*Sqrt[a + b*x] + b*x*Sqrt[a + c*x] + c*x*Sqrt[a + c*x
] + 4*a*Sqrt[a + c*x]*ArcTanh[Sqrt[a + b*x]/Sqrt[a + c*x]] + 2*a*Sqrt[a + c*x]*Log[x]))/((-b + c)^3*Sqrt[a + c
*x])

________________________________________________________________________________________

fricas [A]  time = 0.63, size = 346, normalized size = 2.56 \[ \left [\frac {2 \, a b c \log \relax (x) - 2 \, a b c \log \left (-\frac {{\left (b + c\right )} x - 2 \, \sqrt {b x + a} \sqrt {c x + a} + 2 \, a}{x}\right ) - 2 \, \sqrt {b x + a} \sqrt {c x + a} b c + {\left (a b + a c\right )} \sqrt {b c} \log \left (a b^{2} + 2 \, a b c + a c^{2} + 2 \, {\left (2 \, b c - \sqrt {b c} {\left (b + c\right )}\right )} \sqrt {b x + a} \sqrt {c x + a} + 2 \, {\left (b^{2} c + b c^{2}\right )} x - 2 \, {\left (2 \, b c x + a b + a c\right )} \sqrt {b c}\right ) + {\left (b^{2} c + b c^{2}\right )} x}{b^{3} c - 2 \, b^{2} c^{2} + b c^{3}}, \frac {2 \, a b c \log \relax (x) - 2 \, a b c \log \left (-\frac {{\left (b + c\right )} x - 2 \, \sqrt {b x + a} \sqrt {c x + a} + 2 \, a}{x}\right ) - 2 \, \sqrt {b x + a} \sqrt {c x + a} b c + 2 \, {\left (a b + a c\right )} \sqrt {-b c} \arctan \left (\frac {\sqrt {-b c} \sqrt {b x + a} \sqrt {c x + a} - \sqrt {-b c} a}{b c x}\right ) + {\left (b^{2} c + b c^{2}\right )} x}{b^{3} c - 2 \, b^{2} c^{2} + b c^{3}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/((b*x+a)^(1/2)+(c*x+a)^(1/2))^2,x, algorithm="fricas")

[Out]

[(2*a*b*c*log(x) - 2*a*b*c*log(-((b + c)*x - 2*sqrt(b*x + a)*sqrt(c*x + a) + 2*a)/x) - 2*sqrt(b*x + a)*sqrt(c*
x + a)*b*c + (a*b + a*c)*sqrt(b*c)*log(a*b^2 + 2*a*b*c + a*c^2 + 2*(2*b*c - sqrt(b*c)*(b + c))*sqrt(b*x + a)*s
qrt(c*x + a) + 2*(b^2*c + b*c^2)*x - 2*(2*b*c*x + a*b + a*c)*sqrt(b*c)) + (b^2*c + b*c^2)*x)/(b^3*c - 2*b^2*c^
2 + b*c^3), (2*a*b*c*log(x) - 2*a*b*c*log(-((b + c)*x - 2*sqrt(b*x + a)*sqrt(c*x + a) + 2*a)/x) - 2*sqrt(b*x +
 a)*sqrt(c*x + a)*b*c + 2*(a*b + a*c)*sqrt(-b*c)*arctan((sqrt(-b*c)*sqrt(b*x + a)*sqrt(c*x + a) - sqrt(-b*c)*a
)/(b*c*x)) + (b^2*c + b*c^2)*x)/(b^3*c - 2*b^2*c^2 + b*c^3)]

________________________________________________________________________________________

giac [B]  time = 3.53, size = 306, normalized size = 2.27 \[ \frac {\frac {\sqrt {b c} a {\left (b + c\right )} {\left | b \right |} \log \left ({\left (\sqrt {b c} \sqrt {b x + a} - \sqrt {a b^{2} + {\left (b x + a\right )} b c - a b c}\right )}^{2}\right )}{b^{3} c - 2 \, b^{2} c^{2} + b c^{3}} - \frac {4 \, \sqrt {b c} a {\left | b \right |} \arctan \left (\frac {a b^{2} + a b c - {\left (\sqrt {b c} \sqrt {b x + a} - \sqrt {a b^{2} + {\left (b x + a\right )} b c - a b c}\right )}^{2}}{2 \, \sqrt {-b c} a b}\right )}{{\left (b^{2} - 2 \, b c + c^{2}\right )} \sqrt {-b c}} + \frac {2 \, a b \log \left ({\left | b x \right |}\right )}{b^{2} - 2 \, b c + c^{2}} - \frac {2 \, \sqrt {a b^{2} + {\left (b x + a\right )} b c - a b c} {\left (b^{2} {\left | b \right |} - 2 \, b c {\left | b \right |} + c^{2} {\left | b \right |}\right )} \sqrt {b x + a}}{b^{5} - 4 \, b^{4} c + 6 \, b^{3} c^{2} - 4 \, b^{2} c^{3} + b c^{4}} + \frac {{\left (b x + a\right )} b + {\left (b x + a\right )} c}{b^{2} - 2 \, b c + c^{2}}}{b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/((b*x+a)^(1/2)+(c*x+a)^(1/2))^2,x, algorithm="giac")

[Out]

(sqrt(b*c)*a*(b + c)*abs(b)*log((sqrt(b*c)*sqrt(b*x + a) - sqrt(a*b^2 + (b*x + a)*b*c - a*b*c))^2)/(b^3*c - 2*
b^2*c^2 + b*c^3) - 4*sqrt(b*c)*a*abs(b)*arctan(1/2*(a*b^2 + a*b*c - (sqrt(b*c)*sqrt(b*x + a) - sqrt(a*b^2 + (b
*x + a)*b*c - a*b*c))^2)/(sqrt(-b*c)*a*b))/((b^2 - 2*b*c + c^2)*sqrt(-b*c)) + 2*a*b*log(abs(b*x))/(b^2 - 2*b*c
 + c^2) - 2*sqrt(a*b^2 + (b*x + a)*b*c - a*b*c)*(b^2*abs(b) - 2*b*c*abs(b) + c^2*abs(b))*sqrt(b*x + a)/(b^5 -
4*b^4*c + 6*b^3*c^2 - 4*b^2*c^3 + b*c^4) + ((b*x + a)*b + (b*x + a)*c)/(b^2 - 2*b*c + c^2))/b

________________________________________________________________________________________

maple [C]  time = 0.02, size = 266, normalized size = 1.97 \[ \frac {2 a \ln \relax (x )}{\left (b -c \right )^{2}}+\frac {b x}{\left (b -c \right )^{2}}+\frac {c x}{\left (b -c \right )^{2}}-\frac {\sqrt {b x +a}\, \sqrt {c x +a}\, \left (a b \,\mathrm {csgn}\relax (a ) \ln \left (\frac {2 b c x +a b +a c +2 \sqrt {b c \,x^{2}+a b x +a c x +a^{2}}\, \sqrt {b c}}{2 \sqrt {b c}}\right )+a c \,\mathrm {csgn}\relax (a ) \ln \left (\frac {2 b c x +a b +a c +2 \sqrt {b c \,x^{2}+a b x +a c x +a^{2}}\, \sqrt {b c}}{2 \sqrt {b c}}\right )-2 \sqrt {b c}\, a \ln \left (\frac {\left (b x +c x +2 a +2 \sqrt {b c \,x^{2}+a b x +a c x +a^{2}}\, \mathrm {csgn}\relax (a )\right ) a}{x}\right )+2 \sqrt {b c \,x^{2}+a b x +a c x +a^{2}}\, \sqrt {b c}\, \mathrm {csgn}\relax (a )\right ) \mathrm {csgn}\relax (a )}{\left (b -c \right )^{2} \sqrt {b c \,x^{2}+a b x +a c x +a^{2}}\, \sqrt {b c}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/((b*x+a)^(1/2)+(c*x+a)^(1/2))^2,x)

[Out]

x/(b-c)^2*b+x/(b-c)^2*c+2*a*ln(x)/(b-c)^2-1/(b-c)^2*(b*x+a)^(1/2)*(c*x+a)^(1/2)*(csgn(a)*ln(1/2*(2*b*c*x+a*b+a
*c+2*(b*c*x^2+a*b*x+a*c*x+a^2)^(1/2)*(b*c)^(1/2))/(b*c)^(1/2))*a*b+csgn(a)*ln(1/2*(2*b*c*x+a*b+a*c+2*(b*c*x^2+
a*b*x+a*c*x+a^2)^(1/2)*(b*c)^(1/2))/(b*c)^(1/2))*a*c+2*(b*c*x^2+a*b*x+a*c*x+a^2)^(1/2)*csgn(a)*(b*c)^(1/2)-2*l
n(a*(2*(b*c*x^2+a*b*x+a*c*x+a^2)^(1/2)*csgn(a)+b*x+c*x+2*a)/x)*(b*c)^(1/2)*a)*csgn(a)/(b*c*x^2+a*b*x+a*c*x+a^2
)^(1/2)/(b*c)^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x}{{\left (\sqrt {b x + a} + \sqrt {c x + a}\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/((b*x+a)^(1/2)+(c*x+a)^(1/2))^2,x, algorithm="maxima")

[Out]

integrate(x/(sqrt(b*x + a) + sqrt(c*x + a))^2, x)

________________________________________________________________________________________

mupad [B]  time = 19.76, size = 5098, normalized size = 37.76 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/((a + b*x)^(1/2) + (a + c*x)^(1/2))^2,x)

[Out]

(2*a*log(x))/(b^2 - 2*b*c + c^2) - (((4*a*c^2 + 4*a*b*c)*((a + b*x)^(1/2) - a^(1/2))^3)/((a + c*x)^(1/2) - a^(
1/2))^3 + ((4*a*b^2 + 4*a*b*c)*((a + b*x)^(1/2) - a^(1/2)))/((a + c*x)^(1/2) - a^(1/2)) - (16*a*b*c*((a + b*x)
^(1/2) - a^(1/2))^2)/((a + c*x)^(1/2) - a^(1/2))^2)/(b^4 - 2*b^3*c + b^2*c^2 - (((a + b*x)^(1/2) - a^(1/2))^2*
(2*b*c^3 + 2*b^3*c - 4*b^2*c^2))/((a + c*x)^(1/2) - a^(1/2))^2 + (((a + b*x)^(1/2) - a^(1/2))^4*(c^4 - 2*b*c^3
 + b^2*c^2))/((a + c*x)^(1/2) - a^(1/2))^4) - (2*a*log((((a + b*x)^(1/2) - (a + c*x)^(1/2))*(b - (c*((a + b*x)
^(1/2) - a^(1/2)))/((a + c*x)^(1/2) - a^(1/2))))/((a + c*x)^(1/2) - a^(1/2))))/(b^2 - 2*b*c + c^2) + (2*a*log(
((a + b*x)^(1/2) - a^(1/2))/((a + c*x)^(1/2) - a^(1/2))))/(b - c)^2 + (x*(b + c))/(b - c)^2 + (a*atan(((a*(b*c
)^(1/2)*(b + c)*((2*((a + b*x)^(1/2) - a^(1/2))*(32*a^3*b^2*c^10 - 64*a^3*b^3*c^9 + 8*a^3*b^4*c^8 + 240*a^3*b^
5*c^7 + 8*a^3*b^6*c^6 - 64*a^3*b^7*c^5 + 32*a^3*b^8*c^4))/(((a + c*x)^(1/2) - a^(1/2))*(b^4 - 4*b^3*c - 4*b*c^
3 + c^4 + 6*b^2*c^2)) - (4*(4*a^3*b^4*c^8 + 44*a^3*b^5*c^7 + 44*a^3*b^6*c^6 + 4*a^3*b^7*c^5))/(b^4 - 4*b^3*c -
 4*b*c^3 + c^4 + 6*b^2*c^2) + (2*a*(b*c)^(1/2)*(b + c)*((4*(4*a^2*b^3*c^11 + 2*a^2*b^4*c^10 - 18*a^2*b^5*c^9 +
 12*a^2*b^6*c^8 + 12*a^2*b^7*c^7 - 18*a^2*b^8*c^6 + 2*a^2*b^9*c^5 + 4*a^2*b^10*c^4))/(b^4 - 4*b^3*c - 4*b*c^3
+ c^4 + 6*b^2*c^2) - (2*((a + b*x)^(1/2) - a^(1/2))*(16*a^2*b^2*c^12 - 32*a^2*b^3*c^11 + 36*a^2*b^4*c^10 - 64*
a^2*b^5*c^9 + 88*a^2*b^6*c^8 - 64*a^2*b^7*c^7 + 36*a^2*b^8*c^6 - 32*a^2*b^9*c^5 + 16*a^2*b^10*c^4))/(((a + c*x
)^(1/2) - a^(1/2))*(b^4 - 4*b^3*c - 4*b*c^3 + c^4 + 6*b^2*c^2)) + (2*a*(b*c)^(1/2)*(b + c)*((4*(a*b^4*c^12 + 7
*a*b^5*c^11 - 27*a*b^6*c^10 + 19*a*b^7*c^9 + 19*a*b^8*c^8 - 27*a*b^9*c^7 + 7*a*b^10*c^6 + a*b^11*c^5))/(b^4 -
4*b^3*c - 4*b*c^3 + c^4 + 6*b^2*c^2) - (2*((a + b*x)^(1/2) - a^(1/2))*(8*a*b^3*c^13 - 54*a*b^4*c^12 + 212*a*b^
5*c^11 - 490*a*b^6*c^10 + 648*a*b^7*c^9 - 490*a*b^8*c^8 + 212*a*b^9*c^7 - 54*a*b^10*c^6 + 8*a*b^11*c^5))/(((a
+ c*x)^(1/2) - a^(1/2))*(b^4 - 4*b^3*c - 4*b*c^3 + c^4 + 6*b^2*c^2)) + (2*a*(b*c)^(1/2)*(b + c)*((4*(4*b^5*c^1
3 - b^4*c^14 - 5*b^6*c^12 + b^7*c^11 + b^8*c^10 + b^9*c^9 + b^10*c^8 - 5*b^11*c^7 + 4*b^12*c^6 - b^13*c^5))/(b
^4 - 4*b^3*c - 4*b*c^3 + c^4 + 6*b^2*c^2) + (2*((a + b*x)^(1/2) - a^(1/2))*(4*b^3*c^15 - 31*b^4*c^14 + 120*b^5
*c^13 - 300*b^6*c^12 + 516*b^7*c^11 - 618*b^8*c^10 + 516*b^9*c^9 - 300*b^10*c^8 + 120*b^11*c^7 - 31*b^12*c^6 +
 4*b^13*c^5))/(((a + c*x)^(1/2) - a^(1/2))*(b^4 - 4*b^3*c - 4*b*c^3 + c^4 + 6*b^2*c^2))))/(b*c^3 + b^3*c - 2*b
^2*c^2)))/(b*c^3 + b^3*c - 2*b^2*c^2)))/(b*c^3 + b^3*c - 2*b^2*c^2))*2i)/(b*c^3 + b^3*c - 2*b^2*c^2) - (a*(b*c
)^(1/2)*(b + c)*((4*(4*a^3*b^4*c^8 + 44*a^3*b^5*c^7 + 44*a^3*b^6*c^6 + 4*a^3*b^7*c^5))/(b^4 - 4*b^3*c - 4*b*c^
3 + c^4 + 6*b^2*c^2) - (2*((a + b*x)^(1/2) - a^(1/2))*(32*a^3*b^2*c^10 - 64*a^3*b^3*c^9 + 8*a^3*b^4*c^8 + 240*
a^3*b^5*c^7 + 8*a^3*b^6*c^6 - 64*a^3*b^7*c^5 + 32*a^3*b^8*c^4))/(((a + c*x)^(1/2) - a^(1/2))*(b^4 - 4*b^3*c -
4*b*c^3 + c^4 + 6*b^2*c^2)) + (2*a*(b*c)^(1/2)*(b + c)*((4*(4*a^2*b^3*c^11 + 2*a^2*b^4*c^10 - 18*a^2*b^5*c^9 +
 12*a^2*b^6*c^8 + 12*a^2*b^7*c^7 - 18*a^2*b^8*c^6 + 2*a^2*b^9*c^5 + 4*a^2*b^10*c^4))/(b^4 - 4*b^3*c - 4*b*c^3
+ c^4 + 6*b^2*c^2) - (2*((a + b*x)^(1/2) - a^(1/2))*(16*a^2*b^2*c^12 - 32*a^2*b^3*c^11 + 36*a^2*b^4*c^10 - 64*
a^2*b^5*c^9 + 88*a^2*b^6*c^8 - 64*a^2*b^7*c^7 + 36*a^2*b^8*c^6 - 32*a^2*b^9*c^5 + 16*a^2*b^10*c^4))/(((a + c*x
)^(1/2) - a^(1/2))*(b^4 - 4*b^3*c - 4*b*c^3 + c^4 + 6*b^2*c^2)) + (2*a*(b*c)^(1/2)*(b + c)*((2*((a + b*x)^(1/2
) - a^(1/2))*(8*a*b^3*c^13 - 54*a*b^4*c^12 + 212*a*b^5*c^11 - 490*a*b^6*c^10 + 648*a*b^7*c^9 - 490*a*b^8*c^8 +
 212*a*b^9*c^7 - 54*a*b^10*c^6 + 8*a*b^11*c^5))/(((a + c*x)^(1/2) - a^(1/2))*(b^4 - 4*b^3*c - 4*b*c^3 + c^4 +
6*b^2*c^2)) - (4*(a*b^4*c^12 + 7*a*b^5*c^11 - 27*a*b^6*c^10 + 19*a*b^7*c^9 + 19*a*b^8*c^8 - 27*a*b^9*c^7 + 7*a
*b^10*c^6 + a*b^11*c^5))/(b^4 - 4*b^3*c - 4*b*c^3 + c^4 + 6*b^2*c^2) + (2*a*(b*c)^(1/2)*(b + c)*((4*(4*b^5*c^1
3 - b^4*c^14 - 5*b^6*c^12 + b^7*c^11 + b^8*c^10 + b^9*c^9 + b^10*c^8 - 5*b^11*c^7 + 4*b^12*c^6 - b^13*c^5))/(b
^4 - 4*b^3*c - 4*b*c^3 + c^4 + 6*b^2*c^2) + (2*((a + b*x)^(1/2) - a^(1/2))*(4*b^3*c^15 - 31*b^4*c^14 + 120*b^5
*c^13 - 300*b^6*c^12 + 516*b^7*c^11 - 618*b^8*c^10 + 516*b^9*c^9 - 300*b^10*c^8 + 120*b^11*c^7 - 31*b^12*c^6 +
 4*b^13*c^5))/(((a + c*x)^(1/2) - a^(1/2))*(b^4 - 4*b^3*c - 4*b*c^3 + c^4 + 6*b^2*c^2))))/(b*c^3 + b^3*c - 2*b
^2*c^2)))/(b*c^3 + b^3*c - 2*b^2*c^2)))/(b*c^3 + b^3*c - 2*b^2*c^2))*2i)/(b*c^3 + b^3*c - 2*b^2*c^2))/((4*((a
+ b*x)^(1/2) - a^(1/2))*(128*a^4*b^3*c^7 + 256*a^4*b^4*c^6 + 128*a^4*b^5*c^5))/(((a + c*x)^(1/2) - a^(1/2))*(b
^4 - 4*b^3*c - 4*b*c^3 + c^4 + 6*b^2*c^2)) - (8*(16*a^4*b^3*c^7 + 56*a^4*b^4*c^6 + 56*a^4*b^5*c^5 + 16*a^4*b^6
*c^4))/(b^4 - 4*b^3*c - 4*b*c^3 + c^4 + 6*b^2*c^2) + (2*a*(b*c)^(1/2)*(b + c)*((2*((a + b*x)^(1/2) - a^(1/2))*
(32*a^3*b^2*c^10 - 64*a^3*b^3*c^9 + 8*a^3*b^4*c^8 + 240*a^3*b^5*c^7 + 8*a^3*b^6*c^6 - 64*a^3*b^7*c^5 + 32*a^3*
b^8*c^4))/(((a + c*x)^(1/2) - a^(1/2))*(b^4 - 4*b^3*c - 4*b*c^3 + c^4 + 6*b^2*c^2)) - (4*(4*a^3*b^4*c^8 + 44*a
^3*b^5*c^7 + 44*a^3*b^6*c^6 + 4*a^3*b^7*c^5))/(b^4 - 4*b^3*c - 4*b*c^3 + c^4 + 6*b^2*c^2) + (2*a*(b*c)^(1/2)*(
b + c)*((4*(4*a^2*b^3*c^11 + 2*a^2*b^4*c^10 - 18*a^2*b^5*c^9 + 12*a^2*b^6*c^8 + 12*a^2*b^7*c^7 - 18*a^2*b^8*c^
6 + 2*a^2*b^9*c^5 + 4*a^2*b^10*c^4))/(b^4 - 4*b^3*c - 4*b*c^3 + c^4 + 6*b^2*c^2) - (2*((a + b*x)^(1/2) - a^(1/
2))*(16*a^2*b^2*c^12 - 32*a^2*b^3*c^11 + 36*a^2*b^4*c^10 - 64*a^2*b^5*c^9 + 88*a^2*b^6*c^8 - 64*a^2*b^7*c^7 +
36*a^2*b^8*c^6 - 32*a^2*b^9*c^5 + 16*a^2*b^10*c^4))/(((a + c*x)^(1/2) - a^(1/2))*(b^4 - 4*b^3*c - 4*b*c^3 + c^
4 + 6*b^2*c^2)) + (2*a*(b*c)^(1/2)*(b + c)*((4*(a*b^4*c^12 + 7*a*b^5*c^11 - 27*a*b^6*c^10 + 19*a*b^7*c^9 + 19*
a*b^8*c^8 - 27*a*b^9*c^7 + 7*a*b^10*c^6 + a*b^11*c^5))/(b^4 - 4*b^3*c - 4*b*c^3 + c^4 + 6*b^2*c^2) - (2*((a +
b*x)^(1/2) - a^(1/2))*(8*a*b^3*c^13 - 54*a*b^4*c^12 + 212*a*b^5*c^11 - 490*a*b^6*c^10 + 648*a*b^7*c^9 - 490*a*
b^8*c^8 + 212*a*b^9*c^7 - 54*a*b^10*c^6 + 8*a*b^11*c^5))/(((a + c*x)^(1/2) - a^(1/2))*(b^4 - 4*b^3*c - 4*b*c^3
 + c^4 + 6*b^2*c^2)) + (2*a*(b*c)^(1/2)*(b + c)*((4*(4*b^5*c^13 - b^4*c^14 - 5*b^6*c^12 + b^7*c^11 + b^8*c^10
+ b^9*c^9 + b^10*c^8 - 5*b^11*c^7 + 4*b^12*c^6 - b^13*c^5))/(b^4 - 4*b^3*c - 4*b*c^3 + c^4 + 6*b^2*c^2) + (2*(
(a + b*x)^(1/2) - a^(1/2))*(4*b^3*c^15 - 31*b^4*c^14 + 120*b^5*c^13 - 300*b^6*c^12 + 516*b^7*c^11 - 618*b^8*c^
10 + 516*b^9*c^9 - 300*b^10*c^8 + 120*b^11*c^7 - 31*b^12*c^6 + 4*b^13*c^5))/(((a + c*x)^(1/2) - a^(1/2))*(b^4
- 4*b^3*c - 4*b*c^3 + c^4 + 6*b^2*c^2))))/(b*c^3 + b^3*c - 2*b^2*c^2)))/(b*c^3 + b^3*c - 2*b^2*c^2)))/(b*c^3 +
 b^3*c - 2*b^2*c^2)))/(b*c^3 + b^3*c - 2*b^2*c^2) + (2*a*(b*c)^(1/2)*(b + c)*((4*(4*a^3*b^4*c^8 + 44*a^3*b^5*c
^7 + 44*a^3*b^6*c^6 + 4*a^3*b^7*c^5))/(b^4 - 4*b^3*c - 4*b*c^3 + c^4 + 6*b^2*c^2) - (2*((a + b*x)^(1/2) - a^(1
/2))*(32*a^3*b^2*c^10 - 64*a^3*b^3*c^9 + 8*a^3*b^4*c^8 + 240*a^3*b^5*c^7 + 8*a^3*b^6*c^6 - 64*a^3*b^7*c^5 + 32
*a^3*b^8*c^4))/(((a + c*x)^(1/2) - a^(1/2))*(b^4 - 4*b^3*c - 4*b*c^3 + c^4 + 6*b^2*c^2)) + (2*a*(b*c)^(1/2)*(b
 + c)*((4*(4*a^2*b^3*c^11 + 2*a^2*b^4*c^10 - 18*a^2*b^5*c^9 + 12*a^2*b^6*c^8 + 12*a^2*b^7*c^7 - 18*a^2*b^8*c^6
 + 2*a^2*b^9*c^5 + 4*a^2*b^10*c^4))/(b^4 - 4*b^3*c - 4*b*c^3 + c^4 + 6*b^2*c^2) - (2*((a + b*x)^(1/2) - a^(1/2
))*(16*a^2*b^2*c^12 - 32*a^2*b^3*c^11 + 36*a^2*b^4*c^10 - 64*a^2*b^5*c^9 + 88*a^2*b^6*c^8 - 64*a^2*b^7*c^7 + 3
6*a^2*b^8*c^6 - 32*a^2*b^9*c^5 + 16*a^2*b^10*c^4))/(((a + c*x)^(1/2) - a^(1/2))*(b^4 - 4*b^3*c - 4*b*c^3 + c^4
 + 6*b^2*c^2)) + (2*a*(b*c)^(1/2)*(b + c)*((2*((a + b*x)^(1/2) - a^(1/2))*(8*a*b^3*c^13 - 54*a*b^4*c^12 + 212*
a*b^5*c^11 - 490*a*b^6*c^10 + 648*a*b^7*c^9 - 490*a*b^8*c^8 + 212*a*b^9*c^7 - 54*a*b^10*c^6 + 8*a*b^11*c^5))/(
((a + c*x)^(1/2) - a^(1/2))*(b^4 - 4*b^3*c - 4*b*c^3 + c^4 + 6*b^2*c^2)) - (4*(a*b^4*c^12 + 7*a*b^5*c^11 - 27*
a*b^6*c^10 + 19*a*b^7*c^9 + 19*a*b^8*c^8 - 27*a*b^9*c^7 + 7*a*b^10*c^6 + a*b^11*c^5))/(b^4 - 4*b^3*c - 4*b*c^3
 + c^4 + 6*b^2*c^2) + (2*a*(b*c)^(1/2)*(b + c)*((4*(4*b^5*c^13 - b^4*c^14 - 5*b^6*c^12 + b^7*c^11 + b^8*c^10 +
 b^9*c^9 + b^10*c^8 - 5*b^11*c^7 + 4*b^12*c^6 - b^13*c^5))/(b^4 - 4*b^3*c - 4*b*c^3 + c^4 + 6*b^2*c^2) + (2*((
a + b*x)^(1/2) - a^(1/2))*(4*b^3*c^15 - 31*b^4*c^14 + 120*b^5*c^13 - 300*b^6*c^12 + 516*b^7*c^11 - 618*b^8*c^1
0 + 516*b^9*c^9 - 300*b^10*c^8 + 120*b^11*c^7 - 31*b^12*c^6 + 4*b^13*c^5))/(((a + c*x)^(1/2) - a^(1/2))*(b^4 -
 4*b^3*c - 4*b*c^3 + c^4 + 6*b^2*c^2))))/(b*c^3 + b^3*c - 2*b^2*c^2)))/(b*c^3 + b^3*c - 2*b^2*c^2)))/(b*c^3 +
b^3*c - 2*b^2*c^2)))/(b*c^3 + b^3*c - 2*b^2*c^2)))*(b*c)^(1/2)*(b + c)*4i)/(b*c^3 + b^3*c - 2*b^2*c^2)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x}{\left (\sqrt {a + b x} + \sqrt {a + c x}\right )^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/((b*x+a)**(1/2)+(c*x+a)**(1/2))**2,x)

[Out]

Integral(x/(sqrt(a + b*x) + sqrt(a + c*x))**2, x)

________________________________________________________________________________________