3.430 \(\int \frac {1}{x (\sqrt {a+b x}+\sqrt {a+c x})} \, dx\)

Optimal. Leaf size=103 \[ -\frac {\sqrt {a+b x}}{x (b-c)}+\frac {\sqrt {a+c x}}{x (b-c)}-\frac {b \tanh ^{-1}\left (\frac {\sqrt {a+b x}}{\sqrt {a}}\right )}{\sqrt {a} (b-c)}+\frac {c \tanh ^{-1}\left (\frac {\sqrt {a+c x}}{\sqrt {a}}\right )}{\sqrt {a} (b-c)} \]

[Out]

-b*arctanh((b*x+a)^(1/2)/a^(1/2))/(b-c)/a^(1/2)+c*arctanh((c*x+a)^(1/2)/a^(1/2))/(b-c)/a^(1/2)-(b*x+a)^(1/2)/(
b-c)/x+(c*x+a)^(1/2)/(b-c)/x

________________________________________________________________________________________

Rubi [A]  time = 0.09, antiderivative size = 103, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 4, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {2103, 47, 63, 208} \[ -\frac {\sqrt {a+b x}}{x (b-c)}+\frac {\sqrt {a+c x}}{x (b-c)}-\frac {b \tanh ^{-1}\left (\frac {\sqrt {a+b x}}{\sqrt {a}}\right )}{\sqrt {a} (b-c)}+\frac {c \tanh ^{-1}\left (\frac {\sqrt {a+c x}}{\sqrt {a}}\right )}{\sqrt {a} (b-c)} \]

Antiderivative was successfully verified.

[In]

Int[1/(x*(Sqrt[a + b*x] + Sqrt[a + c*x])),x]

[Out]

-(Sqrt[a + b*x]/((b - c)*x)) + Sqrt[a + c*x]/((b - c)*x) - (b*ArcTanh[Sqrt[a + b*x]/Sqrt[a]])/(Sqrt[a]*(b - c)
) + (c*ArcTanh[Sqrt[a + c*x]/Sqrt[a]])/(Sqrt[a]*(b - c))

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 2103

Int[(u_)/((e_.)*Sqrt[(a_.) + (b_.)*(x_)] + (f_.)*Sqrt[(c_.) + (d_.)*(x_)]), x_Symbol] :> Dist[c/(e*(b*c - a*d)
), Int[(u*Sqrt[a + b*x])/x, x], x] - Dist[a/(f*(b*c - a*d)), Int[(u*Sqrt[c + d*x])/x, x], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a*e^2 - c*f^2, 0]

Rubi steps

\begin {align*} \int \frac {1}{x \left (\sqrt {a+b x}+\sqrt {a+c x}\right )} \, dx &=\frac {\int \frac {\sqrt {a+b x}}{x^2} \, dx}{b-c}-\frac {\int \frac {\sqrt {a+c x}}{x^2} \, dx}{b-c}\\ &=-\frac {\sqrt {a+b x}}{(b-c) x}+\frac {\sqrt {a+c x}}{(b-c) x}+\frac {b \int \frac {1}{x \sqrt {a+b x}} \, dx}{2 (b-c)}-\frac {c \int \frac {1}{x \sqrt {a+c x}} \, dx}{2 (b-c)}\\ &=-\frac {\sqrt {a+b x}}{(b-c) x}+\frac {\sqrt {a+c x}}{(b-c) x}+\frac {\operatorname {Subst}\left (\int \frac {1}{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b x}\right )}{b-c}-\frac {\operatorname {Subst}\left (\int \frac {1}{-\frac {a}{c}+\frac {x^2}{c}} \, dx,x,\sqrt {a+c x}\right )}{b-c}\\ &=-\frac {\sqrt {a+b x}}{(b-c) x}+\frac {\sqrt {a+c x}}{(b-c) x}-\frac {b \tanh ^{-1}\left (\frac {\sqrt {a+b x}}{\sqrt {a}}\right )}{\sqrt {a} (b-c)}+\frac {c \tanh ^{-1}\left (\frac {\sqrt {a+c x}}{\sqrt {a}}\right )}{\sqrt {a} (b-c)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.21, size = 135, normalized size = 1.31 \[ \frac {-\frac {a}{\sqrt {a+b x}}-\frac {b x}{\sqrt {a+b x}}-\frac {b x \sqrt {\frac {b x}{a}+1} \tanh ^{-1}\left (\sqrt {\frac {b x}{a}+1}\right )}{\sqrt {a+b x}}+\frac {a}{\sqrt {a+c x}}+\frac {c x}{\sqrt {a+c x}}+\frac {c x \sqrt {\frac {c x}{a}+1} \tanh ^{-1}\left (\sqrt {\frac {c x}{a}+1}\right )}{\sqrt {a+c x}}}{b x-c x} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x*(Sqrt[a + b*x] + Sqrt[a + c*x])),x]

[Out]

(-(a/Sqrt[a + b*x]) - (b*x)/Sqrt[a + b*x] + a/Sqrt[a + c*x] + (c*x)/Sqrt[a + c*x] - (b*x*Sqrt[1 + (b*x)/a]*Arc
Tanh[Sqrt[1 + (b*x)/a]])/Sqrt[a + b*x] + (c*x*Sqrt[1 + (c*x)/a]*ArcTanh[Sqrt[1 + (c*x)/a]])/Sqrt[a + c*x])/(b*
x - c*x)

________________________________________________________________________________________

fricas [A]  time = 0.49, size = 182, normalized size = 1.77 \[ \left [-\frac {\sqrt {a} b x \log \left (\frac {b x + 2 \, \sqrt {b x + a} \sqrt {a} + 2 \, a}{x}\right ) + \sqrt {a} c x \log \left (\frac {c x - 2 \, \sqrt {c x + a} \sqrt {a} + 2 \, a}{x}\right ) + 2 \, \sqrt {b x + a} a - 2 \, \sqrt {c x + a} a}{2 \, {\left (a b - a c\right )} x}, \frac {\sqrt {-a} b x \arctan \left (\frac {\sqrt {b x + a} \sqrt {-a}}{a}\right ) - \sqrt {-a} c x \arctan \left (\frac {\sqrt {c x + a} \sqrt {-a}}{a}\right ) - \sqrt {b x + a} a + \sqrt {c x + a} a}{{\left (a b - a c\right )} x}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/((b*x+a)^(1/2)+(c*x+a)^(1/2)),x, algorithm="fricas")

[Out]

[-1/2*(sqrt(a)*b*x*log((b*x + 2*sqrt(b*x + a)*sqrt(a) + 2*a)/x) + sqrt(a)*c*x*log((c*x - 2*sqrt(c*x + a)*sqrt(
a) + 2*a)/x) + 2*sqrt(b*x + a)*a - 2*sqrt(c*x + a)*a)/((a*b - a*c)*x), (sqrt(-a)*b*x*arctan(sqrt(b*x + a)*sqrt
(-a)/a) - sqrt(-a)*c*x*arctan(sqrt(c*x + a)*sqrt(-a)/a) - sqrt(b*x + a)*a + sqrt(c*x + a)*a)/((a*b - a*c)*x)]

________________________________________________________________________________________

giac [B]  time = 12.67, size = 1402, normalized size = 13.61 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/((b*x+a)^(1/2)+(c*x+a)^(1/2)),x, algorithm="giac")

[Out]

b*arctan(sqrt(b*x + a)/sqrt(-a))/(sqrt(-a)*(b - c)) - 2*((sqrt(b*c)*sqrt(b*x + a) - sqrt(a*b^2 + (b*x + a)*b*c
 - a*b*c))*a*b^2*c*abs(b) - (sqrt(b*c)*sqrt(b*x + a) - sqrt(a*b^2 + (b*x + a)*b*c - a*b*c))*a*b*c^2*abs(b) + (
sqrt(b*c)*sqrt(b*x + a) - sqrt(a*b^2 + (b*x + a)*b*c - a*b*c))^3*c*abs(b))/((a^2*b^4 - 2*a^2*b^3*c + a^2*b^2*c
^2 - 2*(sqrt(b*c)*sqrt(b*x + a) - sqrt(a*b^2 + (b*x + a)*b*c - a*b*c))^2*a*b^2 - 2*(sqrt(b*c)*sqrt(b*x + a) -
sqrt(a*b^2 + (b*x + a)*b*c - a*b*c))^2*a*b*c + (sqrt(b*c)*sqrt(b*x + a) - sqrt(a*b^2 + (b*x + a)*b*c - a*b*c))
^4)*(b - c)) - sqrt(b*x + a)/((b - c)*x) + (2*(a*b^3*c^2 - a*b^2*c^3)*(a*b^2 - a*b*c)^2*sqrt(-a)*abs(b)*sgn(-2
*b + 2*c) + 2*(a*b^3*c - a*b^2*c^2)*(a*b^2 - a*b*c)^2*sqrt(-a*b*c)*abs(b) + (a^2*b^5*c - 3*a^2*b^4*c^2 + 3*a^2
*b^3*c^3 - a^2*b^2*c^4)*sqrt(-a*b*c)*abs(-a*b^2 + a*b*c)*abs(b)*sgn(-2*b + 2*c) + (a^2*b^6*c - 3*a^2*b^5*c^2 +
 3*a^2*b^4*c^3 - a^2*b^3*c^4)*sqrt(-a)*abs(-a*b^2 + a*b*c)*abs(b) + (a^3*b^7*c^2 - 2*a^3*b^6*c^3 + 2*a^3*b^4*c
^5 - a^3*b^3*c^6)*sqrt(-a)*abs(b)*sgn(-2*b + 2*c) + (a^3*b^7*c - 2*a^3*b^6*c^2 + 2*a^3*b^4*c^4 - a^3*b^3*c^5)*
sqrt(-a*b*c)*abs(b))*arctan(-(sqrt(b*c)*sqrt(b*x + a) - sqrt(a*b^2 + (b*x + a)*b*c - a*b*c))/sqrt(-(a*b^3 - a*
b*c^2 + sqrt((a*b^3 - a*b*c^2)^2 - (a^2*b^5 - 3*a^2*b^4*c + 3*a^2*b^3*c^2 - a^2*b^2*c^3)*(b - c)))/(b - c)))/(
(b^8 - 5*b^7*c + 10*b^6*c^2 - 10*b^5*c^3 + 5*b^4*c^4 - b^3*c^5)*a^3*abs(-a*b^2 + a*b*c)) - (2*(a*b^3*c^2 - a*b
^2*c^3)*(a*b^2 - a*b*c)^2*sqrt(-a)*abs(b)*sgn(-2*b + 2*c) + 2*(a*b^3*c - a*b^2*c^2)*(a*b^2 - a*b*c)^2*sqrt(-a*
b*c)*abs(b) + (a^2*b^5*c - 3*a^2*b^4*c^2 + 3*a^2*b^3*c^3 - a^2*b^2*c^4)*sqrt(-a*b*c)*abs(-a*b^2 + a*b*c)*abs(b
)*sgn(-2*b + 2*c) + (a^2*b^6*c - 3*a^2*b^5*c^2 + 3*a^2*b^4*c^3 - a^2*b^3*c^4)*sqrt(-a)*abs(-a*b^2 + a*b*c)*abs
(b) + (a^3*b^7*c^2 - 2*a^3*b^6*c^3 + 2*a^3*b^4*c^5 - a^3*b^3*c^6)*sqrt(-a)*abs(b)*sgn(-2*b + 2*c) + (a^3*b^7*c
 - 2*a^3*b^6*c^2 + 2*a^3*b^4*c^4 - a^3*b^3*c^5)*sqrt(-a*b*c)*abs(b))*arctan(-(sqrt(b*c)*sqrt(b*x + a) - sqrt(a
*b^2 + (b*x + a)*b*c - a*b*c))/sqrt(-(a*b^3 - a*b*c^2 - sqrt((a*b^3 - a*b*c^2)^2 - (a^2*b^5 - 3*a^2*b^4*c + 3*
a^2*b^3*c^2 - a^2*b^2*c^3)*(b - c)))/(b - c)))/((b^8 - 5*b^7*c + 10*b^6*c^2 - 10*b^5*c^3 + 5*b^4*c^4 - b^3*c^5
)*a^3*abs(-a*b^2 + a*b*c))

________________________________________________________________________________________

maple [A]  time = 0.01, size = 88, normalized size = 0.85 \[ \frac {2 \left (-\frac {\arctanh \left (\frac {\sqrt {b x +a}}{\sqrt {a}}\right )}{2 \sqrt {a}}-\frac {\sqrt {b x +a}}{2 b x}\right ) b}{b -c}-\frac {2 \left (-\frac {\arctanh \left (\frac {\sqrt {c x +a}}{\sqrt {a}}\right )}{2 \sqrt {a}}-\frac {\sqrt {c x +a}}{2 c x}\right ) c}{b -c} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/((b*x+a)^(1/2)+(c*x+a)^(1/2)),x)

[Out]

2/(b-c)*b*(-1/2*(b*x+a)^(1/2)/b/x-1/2*arctanh((b*x+a)^(1/2)/a^(1/2))/a^(1/2))-2/(b-c)*c*(-1/2*(c*x+a)^(1/2)/x/
c-1/2/a^(1/2)*arctanh((c*x+a)^(1/2)/a^(1/2)))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{x {\left (\sqrt {b x + a} + \sqrt {c x + a}\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/((b*x+a)^(1/2)+(c*x+a)^(1/2)),x, algorithm="maxima")

[Out]

integrate(1/(x*(sqrt(b*x + a) + sqrt(c*x + a))), x)

________________________________________________________________________________________

mupad [B]  time = 10.93, size = 1637, normalized size = 15.89 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x*((a + b*x)^(1/2) + (a + c*x)^(1/2))),x)

[Out]

(2*a*b - 2*a*c + a*c*log(((a + b*x)^(1/2) - a^(1/2))/((a + c*x)^(1/2) - a^(1/2))) - 2*a^(1/2)*b*(a + c*x)^(1/2
) + 2*a^(1/2)*c*(a + b*x)^(1/2) + a*b*atan((b^3*(a + b*x)^(1/2)*1i - b^3*(a + c*x)^(1/2)*1i + c^3*(a + b*x)^(1
/2)*1i - a^(1/2)*c^3*1i + a^(1/2)*b*c^2*1i - b*c^2*(a + c*x)^(1/2)*1i)/(b^3*(a + b*x)^(1/2) - b^3*(a + c*x)^(1
/2) - c^3*(a + b*x)^(1/2) + a^(1/2)*c^3 - a^(1/2)*b*c^2 + b*c^2*(a + c*x)^(1/2)))*2i - a*c*atan((b^3*(a + b*x)
^(1/2)*1i - b^3*(a + c*x)^(1/2)*1i + c^3*(a + b*x)^(1/2)*1i - a^(1/2)*c^3*1i + a^(1/2)*b*c^2*1i - b*c^2*(a + c
*x)^(1/2)*1i)/(b^3*(a + b*x)^(1/2) - b^3*(a + c*x)^(1/2) - c^3*(a + b*x)^(1/2) + a^(1/2)*c^3 - a^(1/2)*b*c^2 +
 b*c^2*(a + c*x)^(1/2)))*2i + a*b*log(((a + b*x)^(1/2) - a^(1/2))/((a + c*x)^(1/2) - a^(1/2))) + b*atan((b^3*(
a + b*x)^(1/2)*1i - b^3*(a + c*x)^(1/2)*1i + c^3*(a + b*x)^(1/2)*1i - a^(1/2)*c^3*1i + a^(1/2)*b*c^2*1i - b*c^
2*(a + c*x)^(1/2)*1i)/(b^3*(a + b*x)^(1/2) - b^3*(a + c*x)^(1/2) - c^3*(a + b*x)^(1/2) + a^(1/2)*c^3 - a^(1/2)
*b*c^2 + b*c^2*(a + c*x)^(1/2)))*(a + b*x)^(1/2)*(a + c*x)^(1/2)*2i - c*atan((b^3*(a + b*x)^(1/2)*1i - b^3*(a
+ c*x)^(1/2)*1i + c^3*(a + b*x)^(1/2)*1i - a^(1/2)*c^3*1i + a^(1/2)*b*c^2*1i - b*c^2*(a + c*x)^(1/2)*1i)/(b^3*
(a + b*x)^(1/2) - b^3*(a + c*x)^(1/2) - c^3*(a + b*x)^(1/2) + a^(1/2)*c^3 - a^(1/2)*b*c^2 + b*c^2*(a + c*x)^(1
/2)))*(a + b*x)^(1/2)*(a + c*x)^(1/2)*2i + b*log(((a + b*x)^(1/2) - a^(1/2))/((a + c*x)^(1/2) - a^(1/2)))*(a +
 b*x)^(1/2)*(a + c*x)^(1/2) + c*log(((a + b*x)^(1/2) - a^(1/2))/((a + c*x)^(1/2) - a^(1/2)))*(a + b*x)^(1/2)*(
a + c*x)^(1/2) - a^(1/2)*b*atan((b^3*(a + b*x)^(1/2)*1i - b^3*(a + c*x)^(1/2)*1i + c^3*(a + b*x)^(1/2)*1i - a^
(1/2)*c^3*1i + a^(1/2)*b*c^2*1i - b*c^2*(a + c*x)^(1/2)*1i)/(b^3*(a + b*x)^(1/2) - b^3*(a + c*x)^(1/2) - c^3*(
a + b*x)^(1/2) + a^(1/2)*c^3 - a^(1/2)*b*c^2 + b*c^2*(a + c*x)^(1/2)))*(a + b*x)^(1/2)*2i - a^(1/2)*b*atan((b^
3*(a + b*x)^(1/2)*1i - b^3*(a + c*x)^(1/2)*1i + c^3*(a + b*x)^(1/2)*1i - a^(1/2)*c^3*1i + a^(1/2)*b*c^2*1i - b
*c^2*(a + c*x)^(1/2)*1i)/(b^3*(a + b*x)^(1/2) - b^3*(a + c*x)^(1/2) - c^3*(a + b*x)^(1/2) + a^(1/2)*c^3 - a^(1
/2)*b*c^2 + b*c^2*(a + c*x)^(1/2)))*(a + c*x)^(1/2)*2i + a^(1/2)*c*atan((b^3*(a + b*x)^(1/2)*1i - b^3*(a + c*x
)^(1/2)*1i + c^3*(a + b*x)^(1/2)*1i - a^(1/2)*c^3*1i + a^(1/2)*b*c^2*1i - b*c^2*(a + c*x)^(1/2)*1i)/(b^3*(a +
b*x)^(1/2) - b^3*(a + c*x)^(1/2) - c^3*(a + b*x)^(1/2) + a^(1/2)*c^3 - a^(1/2)*b*c^2 + b*c^2*(a + c*x)^(1/2)))
*(a + b*x)^(1/2)*2i + a^(1/2)*c*atan((b^3*(a + b*x)^(1/2)*1i - b^3*(a + c*x)^(1/2)*1i + c^3*(a + b*x)^(1/2)*1i
 - a^(1/2)*c^3*1i + a^(1/2)*b*c^2*1i - b*c^2*(a + c*x)^(1/2)*1i)/(b^3*(a + b*x)^(1/2) - b^3*(a + c*x)^(1/2) -
c^3*(a + b*x)^(1/2) + a^(1/2)*c^3 - a^(1/2)*b*c^2 + b*c^2*(a + c*x)^(1/2)))*(a + c*x)^(1/2)*2i - a^(1/2)*b*log
(((a + b*x)^(1/2) - a^(1/2))/((a + c*x)^(1/2) - a^(1/2)))*(a + b*x)^(1/2) - a^(1/2)*b*log(((a + b*x)^(1/2) - a
^(1/2))/((a + c*x)^(1/2) - a^(1/2)))*(a + c*x)^(1/2) - a^(1/2)*c*log(((a + b*x)^(1/2) - a^(1/2))/((a + c*x)^(1
/2) - a^(1/2)))*(a + b*x)^(1/2) - a^(1/2)*c*log(((a + b*x)^(1/2) - a^(1/2))/((a + c*x)^(1/2) - a^(1/2)))*(a +
c*x)^(1/2))/(2*a^(1/2)*(b - c)*((a + b*x)^(1/2) - a^(1/2))*((a + c*x)^(1/2) - a^(1/2)))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{x \left (\sqrt {a + b x} + \sqrt {a + c x}\right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/((b*x+a)**(1/2)+(c*x+a)**(1/2)),x)

[Out]

Integral(1/(x*(sqrt(a + b*x) + sqrt(a + c*x))), x)

________________________________________________________________________________________