3.382 \(\int \frac {\sqrt {\frac {a}{x^2}}}{\sqrt {1+x^2}} \, dx\)

Optimal. Leaf size=22 \[ x \left (-\sqrt {\frac {a}{x^2}}\right ) \tanh ^{-1}\left (\sqrt {x^2+1}\right ) \]

[Out]

-x*arctanh((x^2+1)^(1/2))*(a/x^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 22, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.210, Rules used = {15, 266, 63, 207} \[ x \left (-\sqrt {\frac {a}{x^2}}\right ) \tanh ^{-1}\left (\sqrt {x^2+1}\right ) \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a/x^2]/Sqrt[1 + x^2],x]

[Out]

-(Sqrt[a/x^2]*x*ArcTanh[Sqrt[1 + x^2]])

Rule 15

Int[(u_.)*((a_.)*(x_)^(n_))^(m_), x_Symbol] :> Dist[(a^IntPart[m]*(a*x^n)^FracPart[m])/x^(n*FracPart[m]), Int[
u*x^(m*n), x], x] /; FreeQ[{a, m, n}, x] &&  !IntegerQ[m]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {\sqrt {\frac {a}{x^2}}}{\sqrt {1+x^2}} \, dx &=\left (\sqrt {\frac {a}{x^2}} x\right ) \int \frac {1}{x \sqrt {1+x^2}} \, dx\\ &=\frac {1}{2} \left (\sqrt {\frac {a}{x^2}} x\right ) \operatorname {Subst}\left (\int \frac {1}{x \sqrt {1+x}} \, dx,x,x^2\right )\\ &=\left (\sqrt {\frac {a}{x^2}} x\right ) \operatorname {Subst}\left (\int \frac {1}{-1+x^2} \, dx,x,\sqrt {1+x^2}\right )\\ &=-\sqrt {\frac {a}{x^2}} x \tanh ^{-1}\left (\sqrt {1+x^2}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 22, normalized size = 1.00 \[ x \left (-\sqrt {\frac {a}{x^2}}\right ) \tanh ^{-1}\left (\sqrt {x^2+1}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a/x^2]/Sqrt[1 + x^2],x]

[Out]

-(Sqrt[a/x^2]*x*ArcTanh[Sqrt[1 + x^2]])

________________________________________________________________________________________

fricas [A]  time = 0.44, size = 76, normalized size = 3.45 \[ \left [x \sqrt {\frac {a}{x^{2}}} \log \left (\frac {\sqrt {x^{2} + 1} - 1}{x}\right ), 2 \, \sqrt {-a} \arctan \left (-\frac {\sqrt {-a} x^{2} \sqrt {\frac {a}{x^{2}}} - \sqrt {x^{2} + 1} \sqrt {-a} x \sqrt {\frac {a}{x^{2}}}}{a}\right )\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a/x^2)^(1/2)/(x^2+1)^(1/2),x, algorithm="fricas")

[Out]

[x*sqrt(a/x^2)*log((sqrt(x^2 + 1) - 1)/x), 2*sqrt(-a)*arctan(-(sqrt(-a)*x^2*sqrt(a/x^2) - sqrt(x^2 + 1)*sqrt(-
a)*x*sqrt(a/x^2))/a)]

________________________________________________________________________________________

giac [A]  time = 0.21, size = 30, normalized size = 1.36 \[ -\frac {1}{2} \, \sqrt {a} {\left (\log \left (\sqrt {x^{2} + 1} + 1\right ) - \log \left (\sqrt {x^{2} + 1} - 1\right )\right )} \mathrm {sgn}\relax (x) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a/x^2)^(1/2)/(x^2+1)^(1/2),x, algorithm="giac")

[Out]

-1/2*sqrt(a)*(log(sqrt(x^2 + 1) + 1) - log(sqrt(x^2 + 1) - 1))*sgn(x)

________________________________________________________________________________________

maple [A]  time = 0.01, size = 19, normalized size = 0.86 \[ -\sqrt {\frac {a}{x^{2}}}\, x \arctanh \left (\frac {1}{\sqrt {x^{2}+1}}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a/x^2)^(1/2)/(x^2+1)^(1/2),x)

[Out]

-(a/x^2)^(1/2)*x*arctanh(1/(x^2+1)^(1/2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {\frac {a}{x^{2}}}}{\sqrt {x^{2} + 1}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a/x^2)^(1/2)/(x^2+1)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(a/x^2)/sqrt(x^2 + 1), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.05 \[ \int \frac {\sqrt {\frac {a}{x^2}}}{\sqrt {x^2+1}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a/x^2)^(1/2)/(x^2 + 1)^(1/2),x)

[Out]

int((a/x^2)^(1/2)/(x^2 + 1)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {\frac {a}{x^{2}}}}{\sqrt {x^{2} + 1}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a/x**2)**(1/2)/(x**2+1)**(1/2),x)

[Out]

Integral(sqrt(a/x**2)/sqrt(x**2 + 1), x)

________________________________________________________________________________________