3.321 \(\int \frac {\sqrt {a+\frac {b}{c+d x^2}}}{x} \, dx\)

Optimal. Leaf size=96 \[ \sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {\frac {a c+a d x^2+b}{c+d x^2}}}{\sqrt {a}}\right )-\frac {\sqrt {a c+b} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {\frac {a c+a d x^2+b}{c+d x^2}}}{\sqrt {a c+b}}\right )}{\sqrt {c}} \]

[Out]

arctanh(((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)/a^(1/2))*a^(1/2)-arctanh(c^(1/2)*((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)/(
a*c+b)^(1/2))*(a*c+b)^(1/2)/c^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.43, antiderivative size = 184, normalized size of antiderivative = 1.92, number of steps used = 9, number of rules used = 9, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.429, Rules used = {6722, 1975, 446, 105, 63, 217, 206, 93, 208} \[ \frac {\sqrt {a} \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}} \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {c+d x^2}}{\sqrt {a \left (c+d x^2\right )+b}}\right )}{\sqrt {a \left (c+d x^2\right )+b}}-\frac {\sqrt {a c+b} \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}} \tanh ^{-1}\left (\frac {\sqrt {a c+b} \sqrt {c+d x^2}}{\sqrt {c} \sqrt {a \left (c+d x^2\right )+b}}\right )}{\sqrt {c} \sqrt {a \left (c+d x^2\right )+b}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b/(c + d*x^2)]/x,x]

[Out]

(Sqrt[a]*Sqrt[c + d*x^2]*Sqrt[a + b/(c + d*x^2)]*ArcTanh[(Sqrt[a]*Sqrt[c + d*x^2])/Sqrt[b + a*(c + d*x^2)]])/S
qrt[b + a*(c + d*x^2)] - (Sqrt[b + a*c]*Sqrt[c + d*x^2]*Sqrt[a + b/(c + d*x^2)]*ArcTanh[(Sqrt[b + a*c]*Sqrt[c
+ d*x^2])/(Sqrt[c]*Sqrt[b + a*(c + d*x^2)])])/(Sqrt[c]*Sqrt[b + a*(c + d*x^2)])

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 105

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> Dist[b/f, Int[(a
+ b*x)^(m - 1)*(c + d*x)^n, x], x] - Dist[(b*e - a*f)/f, Int[((a + b*x)^(m - 1)*(c + d*x)^n)/(e + f*x), x], x]
 /; FreeQ[{a, b, c, d, e, f, m, n}, x] && IGtQ[Simplify[m + n + 1], 0] && (GtQ[m, 0] || ( !RationalQ[m] && (Su
mSimplerQ[m, -1] ||  !SumSimplerQ[n, -1])))

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 1975

Int[(u_)^(p_.)*(v_)^(q_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Int[(e*x)^m*ExpandToSum[u, x]^p*ExpandToSum[v, x]^q
, x] /; FreeQ[{e, m, p, q}, x] && BinomialQ[{u, v}, x] && EqQ[BinomialDegree[u, x] - BinomialDegree[v, x], 0]
&&  !BinomialMatchQ[{u, v}, x]

Rule 6722

Int[(u_.)*((a_.) + (b_.)*(v_)^(n_))^(p_), x_Symbol] :> Dist[(a + b*v^n)^FracPart[p]/(v^(n*FracPart[p])*(b + a/
v^n)^FracPart[p]), Int[u*v^(n*p)*(b + a/v^n)^p, x], x] /; FreeQ[{a, b, p}, x] &&  !IntegerQ[p] && ILtQ[n, 0] &
& BinomialQ[v, x] &&  !LinearQ[v, x]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+\frac {b}{c+d x^2}}}{x} \, dx &=\frac {\left (\sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \int \frac {\sqrt {b+a \left (c+d x^2\right )}}{x \sqrt {c+d x^2}} \, dx}{\sqrt {b+a \left (c+d x^2\right )}}\\ &=\frac {\left (\sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \int \frac {\sqrt {b+a c+a d x^2}}{x \sqrt {c+d x^2}} \, dx}{\sqrt {b+a \left (c+d x^2\right )}}\\ &=\frac {\left (\sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \operatorname {Subst}\left (\int \frac {\sqrt {b+a c+a d x}}{x \sqrt {c+d x}} \, dx,x,x^2\right )}{2 \sqrt {b+a \left (c+d x^2\right )}}\\ &=-\frac {\left ((-b-a c) \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \operatorname {Subst}\left (\int \frac {1}{x \sqrt {c+d x} \sqrt {b+a c+a d x}} \, dx,x,x^2\right )}{2 \sqrt {b+a \left (c+d x^2\right )}}+\frac {\left (a d \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {c+d x} \sqrt {b+a c+a d x}} \, dx,x,x^2\right )}{2 \sqrt {b+a \left (c+d x^2\right )}}\\ &=\frac {\left (a \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {b+a x^2}} \, dx,x,\sqrt {c+d x^2}\right )}{\sqrt {b+a \left (c+d x^2\right )}}-\frac {\left ((-b-a c) \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \operatorname {Subst}\left (\int \frac {1}{-c-(-b-a c) x^2} \, dx,x,\frac {\sqrt {c+d x^2}}{\sqrt {b+a \left (c+d x^2\right )}}\right )}{\sqrt {b+a \left (c+d x^2\right )}}\\ &=-\frac {\sqrt {b+a c} \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}} \tanh ^{-1}\left (\frac {\sqrt {b+a c} \sqrt {c+d x^2}}{\sqrt {c} \sqrt {b+a \left (c+d x^2\right )}}\right )}{\sqrt {c} \sqrt {b+a \left (c+d x^2\right )}}+\frac {\left (a \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \operatorname {Subst}\left (\int \frac {1}{1-a x^2} \, dx,x,\frac {\sqrt {c+d x^2}}{\sqrt {b+a \left (c+d x^2\right )}}\right )}{\sqrt {b+a \left (c+d x^2\right )}}\\ &=\frac {\sqrt {a} \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}} \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {c+d x^2}}{\sqrt {b+a \left (c+d x^2\right )}}\right )}{\sqrt {b+a \left (c+d x^2\right )}}-\frac {\sqrt {b+a c} \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}} \tanh ^{-1}\left (\frac {\sqrt {b+a c} \sqrt {c+d x^2}}{\sqrt {c} \sqrt {b+a \left (c+d x^2\right )}}\right )}{\sqrt {c} \sqrt {b+a \left (c+d x^2\right )}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.14, size = 80, normalized size = 0.83 \[ \sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a+\frac {b}{c+d x^2}}}{\sqrt {a}}\right )-\frac {\sqrt {a c+b} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+\frac {b}{c+d x^2}}}{\sqrt {a c+b}}\right )}{\sqrt {c}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b/(c + d*x^2)]/x,x]

[Out]

Sqrt[a]*ArcTanh[Sqrt[a + b/(c + d*x^2)]/Sqrt[a]] - (Sqrt[b + a*c]*ArcTanh[(Sqrt[c]*Sqrt[a + b/(c + d*x^2)])/Sq
rt[b + a*c]])/Sqrt[c]

________________________________________________________________________________________

fricas [B]  time = 0.84, size = 927, normalized size = 9.66 \[ \left [\frac {1}{4} \, \sqrt {a} \log \left (8 \, a^{2} d^{2} x^{4} + 8 \, a^{2} c^{2} + 8 \, {\left (2 \, a^{2} c + a b\right )} d x^{2} + 8 \, a b c + b^{2} + 4 \, {\left (2 \, a d^{2} x^{4} + {\left (4 \, a c + b\right )} d x^{2} + 2 \, a c^{2} + b c\right )} \sqrt {a} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}\right ) + \frac {1}{4} \, \sqrt {\frac {a c + b}{c}} \log \left (\frac {{\left (8 \, a^{2} c^{2} + 8 \, a b c + b^{2}\right )} d^{2} x^{4} + 8 \, a^{2} c^{4} + 16 \, a b c^{3} + 8 \, b^{2} c^{2} + 8 \, {\left (2 \, a^{2} c^{3} + 3 \, a b c^{2} + b^{2} c\right )} d x^{2} - 4 \, {\left ({\left (2 \, a c^{2} + b c\right )} d^{2} x^{4} + 2 \, a c^{4} + 2 \, b c^{3} + {\left (4 \, a c^{3} + 3 \, b c^{2}\right )} d x^{2}\right )} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}} \sqrt {\frac {a c + b}{c}}}{x^{4}}\right ), -\frac {1}{2} \, \sqrt {-a} \arctan \left (\frac {{\left (2 \, a d x^{2} + 2 \, a c + b\right )} \sqrt {-a} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}{2 \, {\left (a^{2} d x^{2} + a^{2} c + a b\right )}}\right ) + \frac {1}{4} \, \sqrt {\frac {a c + b}{c}} \log \left (\frac {{\left (8 \, a^{2} c^{2} + 8 \, a b c + b^{2}\right )} d^{2} x^{4} + 8 \, a^{2} c^{4} + 16 \, a b c^{3} + 8 \, b^{2} c^{2} + 8 \, {\left (2 \, a^{2} c^{3} + 3 \, a b c^{2} + b^{2} c\right )} d x^{2} - 4 \, {\left ({\left (2 \, a c^{2} + b c\right )} d^{2} x^{4} + 2 \, a c^{4} + 2 \, b c^{3} + {\left (4 \, a c^{3} + 3 \, b c^{2}\right )} d x^{2}\right )} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}} \sqrt {\frac {a c + b}{c}}}{x^{4}}\right ), \frac {1}{2} \, \sqrt {-\frac {a c + b}{c}} \arctan \left (\frac {{\left ({\left (2 \, a c + b\right )} d x^{2} + 2 \, a c^{2} + 2 \, b c\right )} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}} \sqrt {-\frac {a c + b}{c}}}{2 \, {\left (a^{2} c^{2} + {\left (a^{2} c + a b\right )} d x^{2} + 2 \, a b c + b^{2}\right )}}\right ) + \frac {1}{4} \, \sqrt {a} \log \left (8 \, a^{2} d^{2} x^{4} + 8 \, a^{2} c^{2} + 8 \, {\left (2 \, a^{2} c + a b\right )} d x^{2} + 8 \, a b c + b^{2} + 4 \, {\left (2 \, a d^{2} x^{4} + {\left (4 \, a c + b\right )} d x^{2} + 2 \, a c^{2} + b c\right )} \sqrt {a} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}\right ), -\frac {1}{2} \, \sqrt {-a} \arctan \left (\frac {{\left (2 \, a d x^{2} + 2 \, a c + b\right )} \sqrt {-a} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}{2 \, {\left (a^{2} d x^{2} + a^{2} c + a b\right )}}\right ) + \frac {1}{2} \, \sqrt {-\frac {a c + b}{c}} \arctan \left (\frac {{\left ({\left (2 \, a c + b\right )} d x^{2} + 2 \, a c^{2} + 2 \, b c\right )} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}} \sqrt {-\frac {a c + b}{c}}}{2 \, {\left (a^{2} c^{2} + {\left (a^{2} c + a b\right )} d x^{2} + 2 \, a b c + b^{2}\right )}}\right )\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/(d*x^2+c))^(1/2)/x,x, algorithm="fricas")

[Out]

[1/4*sqrt(a)*log(8*a^2*d^2*x^4 + 8*a^2*c^2 + 8*(2*a^2*c + a*b)*d*x^2 + 8*a*b*c + b^2 + 4*(2*a*d^2*x^4 + (4*a*c
 + b)*d*x^2 + 2*a*c^2 + b*c)*sqrt(a)*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c))) + 1/4*sqrt((a*c + b)/c)*log(((8*a^
2*c^2 + 8*a*b*c + b^2)*d^2*x^4 + 8*a^2*c^4 + 16*a*b*c^3 + 8*b^2*c^2 + 8*(2*a^2*c^3 + 3*a*b*c^2 + b^2*c)*d*x^2
- 4*((2*a*c^2 + b*c)*d^2*x^4 + 2*a*c^4 + 2*b*c^3 + (4*a*c^3 + 3*b*c^2)*d*x^2)*sqrt((a*d*x^2 + a*c + b)/(d*x^2
+ c))*sqrt((a*c + b)/c))/x^4), -1/2*sqrt(-a)*arctan(1/2*(2*a*d*x^2 + 2*a*c + b)*sqrt(-a)*sqrt((a*d*x^2 + a*c +
 b)/(d*x^2 + c))/(a^2*d*x^2 + a^2*c + a*b)) + 1/4*sqrt((a*c + b)/c)*log(((8*a^2*c^2 + 8*a*b*c + b^2)*d^2*x^4 +
 8*a^2*c^4 + 16*a*b*c^3 + 8*b^2*c^2 + 8*(2*a^2*c^3 + 3*a*b*c^2 + b^2*c)*d*x^2 - 4*((2*a*c^2 + b*c)*d^2*x^4 + 2
*a*c^4 + 2*b*c^3 + (4*a*c^3 + 3*b*c^2)*d*x^2)*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c))*sqrt((a*c + b)/c))/x^4), 1
/2*sqrt(-(a*c + b)/c)*arctan(1/2*((2*a*c + b)*d*x^2 + 2*a*c^2 + 2*b*c)*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c))*s
qrt(-(a*c + b)/c)/(a^2*c^2 + (a^2*c + a*b)*d*x^2 + 2*a*b*c + b^2)) + 1/4*sqrt(a)*log(8*a^2*d^2*x^4 + 8*a^2*c^2
 + 8*(2*a^2*c + a*b)*d*x^2 + 8*a*b*c + b^2 + 4*(2*a*d^2*x^4 + (4*a*c + b)*d*x^2 + 2*a*c^2 + b*c)*sqrt(a)*sqrt(
(a*d*x^2 + a*c + b)/(d*x^2 + c))), -1/2*sqrt(-a)*arctan(1/2*(2*a*d*x^2 + 2*a*c + b)*sqrt(-a)*sqrt((a*d*x^2 + a
*c + b)/(d*x^2 + c))/(a^2*d*x^2 + a^2*c + a*b)) + 1/2*sqrt(-(a*c + b)/c)*arctan(1/2*((2*a*c + b)*d*x^2 + 2*a*c
^2 + 2*b*c)*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c))*sqrt(-(a*c + b)/c)/(a^2*c^2 + (a^2*c + a*b)*d*x^2 + 2*a*b*c
+ b^2))]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/(d*x^2+c))^(1/2)/x,x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Warn
ing, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Check [ab
s(d*x^2+c)]Error: Bad Argument Type

________________________________________________________________________________________

maple [B]  time = 0.04, size = 235, normalized size = 2.45 \[ -\frac {\sqrt {\frac {a d \,x^{2}+a c +b}{d \,x^{2}+c}}\, \left (d \,x^{2}+c \right ) \left (-a c d \ln \left (\frac {2 a \,d^{2} x^{2}+2 a c d +b d +2 \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+a \,c^{2}+b c}\, \sqrt {a \,d^{2}}}{2 \sqrt {a \,d^{2}}}\right )+\sqrt {a \,c^{2}+b c}\, \sqrt {a \,d^{2}}\, \ln \left (\frac {2 a c d \,x^{2}+b d \,x^{2}+2 a \,c^{2}+2 b c +2 \sqrt {a \,c^{2}+b c}\, \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+a \,c^{2}+b c}}{x^{2}}\right )\right )}{2 \sqrt {\left (d \,x^{2}+c \right ) \left (a d \,x^{2}+a c +b \right )}\, \sqrt {a \,d^{2}}\, c} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b/(d*x^2+c))^(1/2)/x,x)

[Out]

-1/2*((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)*(d*x^2+c)*(-ln(1/2*(2*a*d^2*x^2+2*a*c*d+b*d+2*(a*d^2*x^4+2*a*c*d*x^2+b*
d*x^2+a*c^2+b*c)^(1/2)*(a*d^2)^(1/2))/(a*d^2)^(1/2))*a*c*d+(a*c^2+b*c)^(1/2)*ln((2*a*c*d*x^2+b*d*x^2+2*a*c^2+2
*(a*c^2+b*c)^(1/2)*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)+2*b*c)/x^2)*(a*d^2)^(1/2))/((d*x^2+c)*(a*d*
x^2+a*c+b))^(1/2)/c/(a*d^2)^(1/2)

________________________________________________________________________________________

maxima [A]  time = 1.46, size = 159, normalized size = 1.66 \[ \frac {{\left (a c + b\right )} \log \left (\frac {c \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}} - \sqrt {{\left (a c + b\right )} c}}{c \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}} + \sqrt {{\left (a c + b\right )} c}}\right )}{2 \, \sqrt {{\left (a c + b\right )} c}} - \frac {1}{2} \, \sqrt {a} \log \left (-\frac {\sqrt {a} - \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}{\sqrt {a} + \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/(d*x^2+c))^(1/2)/x,x, algorithm="maxima")

[Out]

1/2*(a*c + b)*log((c*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c)) - sqrt((a*c + b)*c))/(c*sqrt((a*d*x^2 + a*c + b)/(d
*x^2 + c)) + sqrt((a*c + b)*c)))/sqrt((a*c + b)*c) - 1/2*sqrt(a)*log(-(sqrt(a) - sqrt((a*d*x^2 + a*c + b)/(d*x
^2 + c)))/(sqrt(a) + sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c))))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\sqrt {a+\frac {b}{d\,x^2+c}}}{x} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b/(c + d*x^2))^(1/2)/x,x)

[Out]

int((a + b/(c + d*x^2))^(1/2)/x, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {\frac {a c + a d x^{2} + b}{c + d x^{2}}}}{x}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/(d*x**2+c))**(1/2)/x,x)

[Out]

Integral(sqrt((a*c + a*d*x**2 + b)/(c + d*x**2))/x, x)

________________________________________________________________________________________