3.315 \(\int \frac {1}{(\frac {e (a+b x^2)}{c+d x^2})^{3/2}} \, dx\)

Optimal. Leaf size=327 \[ -\frac {d x \left (a+b x^2\right ) (b c-2 a d)}{a b^2 e \left (c+d x^2\right ) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {\sqrt {c} \sqrt {d} \left (a+b x^2\right ) (b c-2 a d) E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{a b^2 e \left (c+d x^2\right ) \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {c^{3/2} \sqrt {d} \left (a+b x^2\right ) F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{a b e \left (c+d x^2\right ) \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {x (b c-a d)}{a b e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}} \]

[Out]

(-a*d+b*c)*x/a/b/e/(e*(b*x^2+a)/(d*x^2+c))^(1/2)-d*(-2*a*d+b*c)*x*(b*x^2+a)/a/b^2/e/(d*x^2+c)/(e*(b*x^2+a)/(d*
x^2+c))^(1/2)+c^(3/2)*(b*x^2+a)*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticF(x*d^(1/2)/c^(1/2)/(1+d*x^2/c
)^(1/2),(1-b*c/a/d)^(1/2))*d^(1/2)/a/b/e/(d*x^2+c)/(c*(b*x^2+a)/a/(d*x^2+c))^(1/2)/(e*(b*x^2+a)/(d*x^2+c))^(1/
2)+(-2*a*d+b*c)*(b*x^2+a)*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticE(x*d^(1/2)/c^(1/2)/(1+d*x^2/c)^(1/2
),(1-b*c/a/d)^(1/2))*c^(1/2)*d^(1/2)/a/b^2/e/(d*x^2+c)/(c*(b*x^2+a)/a/(d*x^2+c))^(1/2)/(e*(b*x^2+a)/(d*x^2+c))
^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.22, antiderivative size = 327, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.273, Rules used = {6719, 413, 531, 418, 492, 411} \[ -\frac {d x \left (a+b x^2\right ) (b c-2 a d)}{a b^2 e \left (c+d x^2\right ) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {\sqrt {c} \sqrt {d} \left (a+b x^2\right ) (b c-2 a d) E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{a b^2 e \left (c+d x^2\right ) \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {c^{3/2} \sqrt {d} \left (a+b x^2\right ) F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{a b e \left (c+d x^2\right ) \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {x (b c-a d)}{a b e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}} \]

Antiderivative was successfully verified.

[In]

Int[((e*(a + b*x^2))/(c + d*x^2))^(-3/2),x]

[Out]

((b*c - a*d)*x)/(a*b*e*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]) - (d*(b*c - 2*a*d)*x*(a + b*x^2))/(a*b^2*e*Sqrt[(e*(
a + b*x^2))/(c + d*x^2)]*(c + d*x^2)) + (Sqrt[c]*Sqrt[d]*(b*c - 2*a*d)*(a + b*x^2)*EllipticE[ArcTan[(Sqrt[d]*x
)/Sqrt[c]], 1 - (b*c)/(a*d)])/(a*b^2*e*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]
*(c + d*x^2)) + (c^(3/2)*Sqrt[d]*(a + b*x^2)*EllipticF[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(a*b*e*S
qrt[(c*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*(c + d*x^2))

Rule 411

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticE[ArcTan
[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 413

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[((a*d - c*b)*x*(a + b*x^n)^
(p + 1)*(c + d*x^n)^(q - 1))/(a*b*n*(p + 1)), x] - Dist[1/(a*b*n*(p + 1)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)
^(q - 2)*Simp[c*(a*d - c*b*(n*(p + 1) + 1)) + d*(a*d*(n*(q - 1) + 1) - b*c*(n*(p + q) + 1))*x^n, x], x], x] /;
 FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && GtQ[q, 1] && IntBinomialQ[a, b, c, d, n, p, q
, x]

Rule 418

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticF[ArcT
an[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 492

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(x*Sqrt[a + b*x^2])/(b*Sqr
t[c + d*x^2]), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 531

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Dist[
e, Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Dist[f, Int[x^n*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a,
b, c, d, e, f, n, p, q}, x]

Rule 6719

Int[(u_.)*((a_.)*(v_)^(m_.)*(w_)^(n_.))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a*v^m*w^n)^FracPart[p])/(v^(m*F
racPart[p])*w^(n*FracPart[p])), Int[u*v^(m*p)*w^(n*p), x], x] /; FreeQ[{a, m, n, p}, x] &&  !IntegerQ[p] &&  !
FreeQ[v, x] &&  !FreeQ[w, x]

Rubi steps

\begin {align*} \int \frac {1}{\left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2}} \, dx &=\frac {\sqrt {a+b x^2} \int \frac {\left (c+d x^2\right )^{3/2}}{\left (a+b x^2\right )^{3/2}} \, dx}{e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}}\\ &=\frac {(b c-a d) x}{a b e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {\sqrt {a+b x^2} \int \frac {a c d-d (b c-2 a d) x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{a b e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}}\\ &=\frac {(b c-a d) x}{a b e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {\left (c d \sqrt {a+b x^2}\right ) \int \frac {1}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{b e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}}-\frac {\left (d (b c-2 a d) \sqrt {a+b x^2}\right ) \int \frac {x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{a b e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}}\\ &=\frac {(b c-a d) x}{a b e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}-\frac {d (b c-2 a d) x \left (a+b x^2\right )}{a b^2 e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}+\frac {c^{3/2} \sqrt {d} \left (a+b x^2\right ) F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{a b e \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}+\frac {\left (c d (b c-2 a d) \sqrt {a+b x^2}\right ) \int \frac {\sqrt {a+b x^2}}{\left (c+d x^2\right )^{3/2}} \, dx}{a b^2 e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}}\\ &=\frac {(b c-a d) x}{a b e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}-\frac {d (b c-2 a d) x \left (a+b x^2\right )}{a b^2 e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}+\frac {\sqrt {c} \sqrt {d} (b c-2 a d) \left (a+b x^2\right ) E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{a b^2 e \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}+\frac {c^{3/2} \sqrt {d} \left (a+b x^2\right ) F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{a b e \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.47, size = 203, normalized size = 0.62 \[ \frac {\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left ((b c-a d) \left (x \sqrt {\frac {b}{a}} \left (c+d x^2\right )-i c \sqrt {\frac {b x^2}{a}+1} \sqrt {\frac {d x^2}{c}+1} F\left (i \sinh ^{-1}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )\right )-i c \sqrt {\frac {b x^2}{a}+1} \sqrt {\frac {d x^2}{c}+1} (2 a d-b c) E\left (i \sinh ^{-1}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )\right )}{a^2 e^2 \left (\frac {b}{a}\right )^{3/2} \left (a+b x^2\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[((e*(a + b*x^2))/(c + d*x^2))^(-3/2),x]

[Out]

(Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*((-I)*c*(-(b*c) + 2*a*d)*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*EllipticE[
I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)] + (b*c - a*d)*(Sqrt[b/a]*x*(c + d*x^2) - I*c*Sqrt[1 + (b*x^2)/a]*Sqrt[1 +
 (d*x^2)/c]*EllipticF[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)])))/(a^2*(b/a)^(3/2)*e^2*(a + b*x^2))

________________________________________________________________________________________

fricas [F]  time = 0.63, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (d^{2} x^{4} + 2 \, c d x^{2} + c^{2}\right )} \sqrt {\frac {b e x^{2} + a e}{d x^{2} + c}}}{b^{2} e^{2} x^{4} + 2 \, a b e^{2} x^{2} + a^{2} e^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*(b*x^2+a)/(d*x^2+c))^(3/2),x, algorithm="fricas")

[Out]

integral((d^2*x^4 + 2*c*d*x^2 + c^2)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c))/(b^2*e^2*x^4 + 2*a*b*e^2*x^2 + a^2*e^2)
, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (\frac {{\left (b x^{2} + a\right )} e}{d x^{2} + c}\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*(b*x^2+a)/(d*x^2+c))^(3/2),x, algorithm="giac")

[Out]

integrate(((b*x^2 + a)*e/(d*x^2 + c))^(-3/2), x)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 514, normalized size = 1.57 \[ -\frac {\left (b \,x^{2}+a \right ) \left (\sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {-\frac {b}{a}}\, a \,d^{2} x^{3}-\sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {-\frac {b}{a}}\, b c d \,x^{3}+\sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {-\frac {b}{a}}\, a c d x -2 \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, a c d \EllipticE \left (\sqrt {-\frac {b}{a}}\, x , \sqrt {\frac {a d}{b c}}\right )+\sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, a c d \EllipticF \left (\sqrt {-\frac {b}{a}}\, x , \sqrt {\frac {a d}{b c}}\right )-\sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {-\frac {b}{a}}\, b \,c^{2} x +\sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, b \,c^{2} \EllipticE \left (\sqrt {-\frac {b}{a}}\, x , \sqrt {\frac {a d}{b c}}\right )-\sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, b \,c^{2} \EllipticF \left (\sqrt {-\frac {b}{a}}\, x , \sqrt {\frac {a d}{b c}}\right )\right )}{\left (\frac {\left (b \,x^{2}+a \right ) e}{d \,x^{2}+c}\right )^{\frac {3}{2}} \left (d \,x^{2}+c \right )^{2} \sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, a b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((b*x^2+a)/(d*x^2+c)*e)^(3/2),x)

[Out]

-(b*x^2+a)/b*((b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(-1/a*b)^(1/2)*a*d^2*x^3-(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)
*(-1/a*b)^(1/2)*b*c*d*x^3+((d*x^2+c)*(b*x^2+a))^(1/2)*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF((-1/a*
b)^(1/2)*x,(a/b/c*d)^(1/2))*a*c*d-((d*x^2+c)*(b*x^2+a))^(1/2)*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*Elliptic
F((-1/a*b)^(1/2)*x,(a/b/c*d)^(1/2))*b*c^2-2*((d*x^2+c)*(b*x^2+a))^(1/2)*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2
)*EllipticE((-1/a*b)^(1/2)*x,(a/b/c*d)^(1/2))*a*c*d+((d*x^2+c)*(b*x^2+a))^(1/2)*((b*x^2+a)/a)^(1/2)*((d*x^2+c)
/c)^(1/2)*EllipticE((-1/a*b)^(1/2)*x,(a/b/c*d)^(1/2))*b*c^2+(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(-1/a*b)^(1/2)
*a*c*d*x-(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(-1/a*b)^(1/2)*b*c^2*x)/((b*x^2+a)/(d*x^2+c)*e)^(3/2)/(d*x^2+c)^2
/a/(-1/a*b)^(1/2)/(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (\frac {{\left (b x^{2} + a\right )} e}{d x^{2} + c}\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*(b*x^2+a)/(d*x^2+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(((b*x^2 + a)*e/(d*x^2 + c))^(-3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {1}{{\left (\frac {e\,\left (b\,x^2+a\right )}{d\,x^2+c}\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((e*(a + b*x^2))/(c + d*x^2))^(3/2),x)

[Out]

int(1/((e*(a + b*x^2))/(c + d*x^2))^(3/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*(b*x**2+a)/(d*x**2+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________