3.310 \(\int \frac {1}{x (\frac {e (a+b x^2)}{c+d x^2})^{3/2}} \, dx\)

Optimal. Leaf size=152 \[ -\frac {c^{3/2} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt {a} \sqrt {e}}\right )}{a^{3/2} e^{3/2}}+\frac {d^{3/2} \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt {b} \sqrt {e}}\right )}{b^{3/2} e^{3/2}}+\frac {b c-a d}{a b e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}} \]

[Out]

-c^(3/2)*arctanh(c^(1/2)*(e*(b*x^2+a)/(d*x^2+c))^(1/2)/a^(1/2)/e^(1/2))/a^(3/2)/e^(3/2)+d^(3/2)*arctanh(d^(1/2
)*(e*(b*x^2+a)/(d*x^2+c))^(1/2)/b^(1/2)/e^(1/2))/b^(3/2)/e^(3/2)+(-a*d+b*c)/a/b/e/(e*(b*x^2+a)/(d*x^2+c))^(1/2
)

________________________________________________________________________________________

Rubi [A]  time = 0.20, antiderivative size = 152, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {1960, 480, 522, 208} \[ -\frac {c^{3/2} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt {a} \sqrt {e}}\right )}{a^{3/2} e^{3/2}}+\frac {d^{3/2} \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt {b} \sqrt {e}}\right )}{b^{3/2} e^{3/2}}+\frac {b c-a d}{a b e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x*((e*(a + b*x^2))/(c + d*x^2))^(3/2)),x]

[Out]

(b*c - a*d)/(a*b*e*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]) - (c^(3/2)*ArcTanh[(Sqrt[c]*Sqrt[(e*(a + b*x^2))/(c + d*
x^2)])/(Sqrt[a]*Sqrt[e])])/(a^(3/2)*e^(3/2)) + (d^(3/2)*ArcTanh[(Sqrt[d]*Sqrt[(e*(a + b*x^2))/(c + d*x^2)])/(S
qrt[b]*Sqrt[e])])/(b^(3/2)*e^(3/2))

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 480

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[((e*x)^(m
 + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(a*c*e*(m + 1)), x] - Dist[1/(a*c*e^n*(m + 1)), Int[(e*x)^(m +
n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[(b*c + a*d)*(m + n + 1) + n*(b*c*p + a*d*q) + b*d*(m + n*(p + q + 2) + 1)*
x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[m, -1] && IntBino
mialQ[a, b, c, d, e, m, n, p, q, x]

Rule 522

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Dist[(b*e - a*f
)/(b*c - a*d), Int[1/(a + b*x^n), x], x] - Dist[(d*e - c*f)/(b*c - a*d), Int[1/(c + d*x^n), x], x] /; FreeQ[{a
, b, c, d, e, f, n}, x]

Rule 1960

Int[(x_)^(m_.)*(((e_.)*((a_.) + (b_.)*(x_)^(n_.)))/((c_) + (d_.)*(x_)^(n_.)))^(p_), x_Symbol] :> With[{q = Den
ominator[p]}, Dist[(q*e*(b*c - a*d))/n, Subst[Int[(x^(q*(p + 1) - 1)*(-(a*e) + c*x^q)^(Simplify[(m + 1)/n] - 1
))/(b*e - d*x^q)^(Simplify[(m + 1)/n] + 1), x], x, ((e*(a + b*x^n))/(c + d*x^n))^(1/q)], x]] /; FreeQ[{a, b, c
, d, e, m, n}, x] && FractionQ[p] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {1}{x \left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2}} \, dx &=((b c-a d) e) \operatorname {Subst}\left (\int \frac {1}{x^2 \left (-a e+c x^2\right ) \left (b e-d x^2\right )} \, dx,x,\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}\right )\\ &=\frac {b c-a d}{a b e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}-\frac {(b c-a d) \operatorname {Subst}\left (\int \frac {-(b c+a d) e+c d x^2}{\left (-a e+c x^2\right ) \left (b e-d x^2\right )} \, dx,x,\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}\right )}{a b e}\\ &=\frac {b c-a d}{a b e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {c^2 \operatorname {Subst}\left (\int \frac {1}{-a e+c x^2} \, dx,x,\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}\right )}{a e}+\frac {d^2 \operatorname {Subst}\left (\int \frac {1}{b e-d x^2} \, dx,x,\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}\right )}{b e}\\ &=\frac {b c-a d}{a b e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}-\frac {c^{3/2} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt {a} \sqrt {e}}\right )}{a^{3/2} e^{3/2}}+\frac {d^{3/2} \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt {b} \sqrt {e}}\right )}{b^{3/2} e^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.35, size = 253, normalized size = 1.66 \[ \frac {-a^{3/2} d^{3/2} \sqrt {a+b x^2} \sqrt {c+d x^2} (a d-b c) \sqrt {\frac {b \left (c+d x^2\right )}{b c-a d}} \sinh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x^2}}{\sqrt {b c-a d}}\right )-b \left (c+d x^2\right ) \sqrt {b c-a d} \left (b c^{3/2} \sqrt {a+b x^2} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+b x^2}}{\sqrt {a} \sqrt {c+d x^2}}\right )+\sqrt {a} \sqrt {c+d x^2} (a d-b c)\right )}{a^{3/2} b^2 e \left (c+d x^2\right )^{3/2} \sqrt {b c-a d} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x*((e*(a + b*x^2))/(c + d*x^2))^(3/2)),x]

[Out]

(-(a^(3/2)*d^(3/2)*(-(b*c) + a*d)*Sqrt[a + b*x^2]*Sqrt[c + d*x^2]*Sqrt[(b*(c + d*x^2))/(b*c - a*d)]*ArcSinh[(S
qrt[d]*Sqrt[a + b*x^2])/Sqrt[b*c - a*d]]) - b*Sqrt[b*c - a*d]*(c + d*x^2)*(Sqrt[a]*(-(b*c) + a*d)*Sqrt[c + d*x
^2] + b*c^(3/2)*Sqrt[a + b*x^2]*ArcTanh[(Sqrt[c]*Sqrt[a + b*x^2])/(Sqrt[a]*Sqrt[c + d*x^2])]))/(a^(3/2)*b^2*Sq
rt[b*c - a*d]*e*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*(c + d*x^2)^(3/2))

________________________________________________________________________________________

fricas [B]  time = 1.60, size = 1293, normalized size = 8.51 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(e*(b*x^2+a)/(d*x^2+c))^(3/2),x, algorithm="fricas")

[Out]

[1/4*((a*b*d*e*x^2 + a^2*d*e)*sqrt(d/(b*e))*log(8*b^2*d^2*x^4 + b^2*c^2 + 6*a*b*c*d + a^2*d^2 + 8*(b^2*c*d + a
*b*d^2)*x^2 + 4*(2*b^2*d^2*x^4 + b^2*c^2 + a*b*c*d + (3*b^2*c*d + a*b*d^2)*x^2)*sqrt((b*e*x^2 + a*e)/(d*x^2 +
c))*sqrt(d/(b*e))) + (b^2*c*e*x^2 + a*b*c*e)*sqrt(c/(a*e))*log(((b^2*c^2 + 6*a*b*c*d + a^2*d^2)*x^4 + 8*a^2*c^
2 + 8*(a*b*c^2 + a^2*c*d)*x^2 - 4*((a*b*c*d + a^2*d^2)*x^4 + 2*a^2*c^2 + (a*b*c^2 + 3*a^2*c*d)*x^2)*sqrt((b*e*
x^2 + a*e)/(d*x^2 + c))*sqrt(c/(a*e)))/x^4) + 4*(b*c^2 - a*c*d + (b*c*d - a*d^2)*x^2)*sqrt((b*e*x^2 + a*e)/(d*
x^2 + c)))/(a*b^2*e^2*x^2 + a^2*b*e^2), -1/4*(2*(a*b*d*e*x^2 + a^2*d*e)*sqrt(-d/(b*e))*arctan(1/2*(2*b*d*x^2 +
 b*c + a*d)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c))*sqrt(-d/(b*e))/(b*d*x^2 + a*d)) - (b^2*c*e*x^2 + a*b*c*e)*sqrt(c
/(a*e))*log(((b^2*c^2 + 6*a*b*c*d + a^2*d^2)*x^4 + 8*a^2*c^2 + 8*(a*b*c^2 + a^2*c*d)*x^2 - 4*((a*b*c*d + a^2*d
^2)*x^4 + 2*a^2*c^2 + (a*b*c^2 + 3*a^2*c*d)*x^2)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c))*sqrt(c/(a*e)))/x^4) - 4*(b*
c^2 - a*c*d + (b*c*d - a*d^2)*x^2)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c)))/(a*b^2*e^2*x^2 + a^2*b*e^2), 1/4*(2*(b^2
*c*e*x^2 + a*b*c*e)*sqrt(-c/(a*e))*arctan(1/2*((b*c + a*d)*x^2 + 2*a*c)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c))*sqrt
(-c/(a*e))/(b*c*x^2 + a*c)) + (a*b*d*e*x^2 + a^2*d*e)*sqrt(d/(b*e))*log(8*b^2*d^2*x^4 + b^2*c^2 + 6*a*b*c*d +
a^2*d^2 + 8*(b^2*c*d + a*b*d^2)*x^2 + 4*(2*b^2*d^2*x^4 + b^2*c^2 + a*b*c*d + (3*b^2*c*d + a*b*d^2)*x^2)*sqrt((
b*e*x^2 + a*e)/(d*x^2 + c))*sqrt(d/(b*e))) + 4*(b*c^2 - a*c*d + (b*c*d - a*d^2)*x^2)*sqrt((b*e*x^2 + a*e)/(d*x
^2 + c)))/(a*b^2*e^2*x^2 + a^2*b*e^2), 1/2*((b^2*c*e*x^2 + a*b*c*e)*sqrt(-c/(a*e))*arctan(1/2*((b*c + a*d)*x^2
 + 2*a*c)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c))*sqrt(-c/(a*e))/(b*c*x^2 + a*c)) - (a*b*d*e*x^2 + a^2*d*e)*sqrt(-d/
(b*e))*arctan(1/2*(2*b*d*x^2 + b*c + a*d)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c))*sqrt(-d/(b*e))/(b*d*x^2 + a*d)) +
2*(b*c^2 - a*c*d + (b*c*d - a*d^2)*x^2)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c)))/(a*b^2*e^2*x^2 + a^2*b*e^2)]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(e*(b*x^2+a)/(d*x^2+c))^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Warn
ing, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Check [ab
s(t_nostep*d+c)]Unable to divide, perhaps due to rounding error%%%{%%%{2,[1,2,2]%%%},[2,1,3,0]%%%}+%%%{%%%{-4,
[2,1,2]%%%},[2,1,2,1]%%%}+%%%{%%%{2,[3,0,2]%%%},[2,1,1,2]%%%}+%%%{%%{[%%%{-4,[0,2,2]%%%},0]:[1,0,%%%{-1,[1,1,1
]%%%}]%%},[1,1,4,0]%%%}+%%%{%%{[%%%{8,[1,1,2]%%%},0]:[1,0,%%%{-1,[1,1,1]%%%}]%%},[1,1,3,1]%%%}+%%%{%%{[%%%{-4,
[2,0,2]%%%},0]:[1,0,%%%{-1,[1,1,1]%%%}]%%},[1,1,2,2]%%%}+%%%{%%%{2,[0,3,3]%%%},[0,1,5,0]%%%}+%%%{%%%{-4,[1,2,3
]%%%},[0,1,4,1]%%%}+%%%{%%%{2,[2,1,3]%%%},[0,1,3,2]%%%} / %%%{%%%{1,[2,0,0]%%%},[2,0,0,0]%%%}+%%%{%%{[%%%{-2,[
1,0,0]%%%},0]:[1,0,%%%{-1,[1,1,1]%%%}]%%},[1,0,1,0]%%%}+%%%{%%%{1,[1,1,1]%%%},[0,0,2,0]%%%} Error: Bad Argumen
t Value

________________________________________________________________________________________

maple [B]  time = 0.06, size = 401, normalized size = 2.64 \[ -\frac {\left (-\sqrt {a c}\, a b \,d^{2} x^{2} \ln \left (\frac {2 b d \,x^{2}+a d +b c +2 \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {b d}}{2 \sqrt {b d}}\right )+\sqrt {b d}\, b^{2} c^{2} x^{2} \ln \left (\frac {a d \,x^{2}+b c \,x^{2}+2 a c +2 \sqrt {a c}\, \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}}{x^{2}}\right )-\sqrt {a c}\, a^{2} d^{2} \ln \left (\frac {2 b d \,x^{2}+a d +b c +2 \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {b d}}{2 \sqrt {b d}}\right )+\sqrt {b d}\, a b \,c^{2} \ln \left (\frac {a d \,x^{2}+b c \,x^{2}+2 a c +2 \sqrt {a c}\, \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}}{x^{2}}\right )+2 \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {b d}\, \sqrt {a c}\, a d -2 \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {b d}\, \sqrt {a c}\, b c \right ) \left (b \,x^{2}+a \right )}{2 \sqrt {a c}\, \sqrt {b d}\, \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \left (d \,x^{2}+c \right ) \left (\frac {\left (b \,x^{2}+a \right ) e}{d \,x^{2}+c}\right )^{\frac {3}{2}} a b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/((b*x^2+a)/(d*x^2+c)*e)^(3/2),x)

[Out]

-1/2*(-ln(1/2*(2*b*d*x^2+a*d+b*c+2*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(b*d)^(1/2))/(b*d)^(1/2))*(a*c)^(1/2)*x
^2*a*b*d^2+(b*d)^(1/2)*ln((a*d*x^2+b*c*x^2+2*a*c+2*(a*c)^(1/2)*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2))/x^2)*x^2*b
^2*c^2-ln(1/2*(2*b*d*x^2+a*d+b*c+2*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(b*d)^(1/2))/(b*d)^(1/2))*(a*c)^(1/2)*a
^2*d^2+(b*d)^(1/2)*ln((a*d*x^2+b*c*x^2+2*a*c+2*(a*c)^(1/2)*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2))/x^2)*a*b*c^2+2
*((d*x^2+c)*(b*x^2+a))^(1/2)*(b*d)^(1/2)*(a*c)^(1/2)*a*d-2*((d*x^2+c)*(b*x^2+a))^(1/2)*(b*d)^(1/2)*(a*c)^(1/2)
*b*c)/a/b*(b*x^2+a)/(a*c)^(1/2)/(b*d)^(1/2)/((d*x^2+c)*(b*x^2+a))^(1/2)/(d*x^2+c)/((b*x^2+a)/(d*x^2+c)*e)^(3/2
)

________________________________________________________________________________________

maxima [A]  time = 1.92, size = 204, normalized size = 1.34 \[ \frac {1}{2} \, e {\left (\frac {c^{2} \log \left (\frac {c \sqrt {\frac {{\left (b x^{2} + a\right )} e}{d x^{2} + c}} - \sqrt {a c e}}{c \sqrt {\frac {{\left (b x^{2} + a\right )} e}{d x^{2} + c}} + \sqrt {a c e}}\right )}{\sqrt {a c e} a e^{2}} - \frac {d^{2} \log \left (\frac {d \sqrt {\frac {{\left (b x^{2} + a\right )} e}{d x^{2} + c}} - \sqrt {b d e}}{d \sqrt {\frac {{\left (b x^{2} + a\right )} e}{d x^{2} + c}} + \sqrt {b d e}}\right )}{\sqrt {b d e} b e^{2}} + \frac {2 \, {\left (b c - a d\right )}}{a b \sqrt {\frac {{\left (b x^{2} + a\right )} e}{d x^{2} + c}} e^{2}}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(e*(b*x^2+a)/(d*x^2+c))^(3/2),x, algorithm="maxima")

[Out]

1/2*e*(c^2*log((c*sqrt((b*x^2 + a)*e/(d*x^2 + c)) - sqrt(a*c*e))/(c*sqrt((b*x^2 + a)*e/(d*x^2 + c)) + sqrt(a*c
*e)))/(sqrt(a*c*e)*a*e^2) - d^2*log((d*sqrt((b*x^2 + a)*e/(d*x^2 + c)) - sqrt(b*d*e))/(d*sqrt((b*x^2 + a)*e/(d
*x^2 + c)) + sqrt(b*d*e)))/(sqrt(b*d*e)*b*e^2) + 2*(b*c - a*d)/(a*b*sqrt((b*x^2 + a)*e/(d*x^2 + c))*e^2))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{x\,{\left (\frac {e\,\left (b\,x^2+a\right )}{d\,x^2+c}\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x*((e*(a + b*x^2))/(c + d*x^2))^(3/2)),x)

[Out]

int(1/(x*((e*(a + b*x^2))/(c + d*x^2))^(3/2)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(e*(b*x**2+a)/(d*x**2+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________