3.304 \(\int \frac {1}{\sqrt {\frac {e (a+b x^2)}{c+d x^2}}} \, dx\)

Optimal. Leaf size=252 \[ \frac {c^{3/2} \left (a+b x^2\right ) F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{a \sqrt {d} \left (c+d x^2\right ) \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {d x \left (a+b x^2\right )}{b \left (c+d x^2\right ) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}-\frac {\sqrt {c} \sqrt {d} \left (a+b x^2\right ) E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{b \left (c+d x^2\right ) \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}} \]

[Out]

d*x*(b*x^2+a)/b/(d*x^2+c)/(e*(b*x^2+a)/(d*x^2+c))^(1/2)+c^(3/2)*(b*x^2+a)*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1
/2)*EllipticF(x*d^(1/2)/c^(1/2)/(1+d*x^2/c)^(1/2),(1-b*c/a/d)^(1/2))/a/(d*x^2+c)/d^(1/2)/(c*(b*x^2+a)/a/(d*x^2
+c))^(1/2)/(e*(b*x^2+a)/(d*x^2+c))^(1/2)-(b*x^2+a)*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticE(x*d^(1/2)
/c^(1/2)/(1+d*x^2/c)^(1/2),(1-b*c/a/d)^(1/2))*c^(1/2)*d^(1/2)/b/(d*x^2+c)/(c*(b*x^2+a)/a/(d*x^2+c))^(1/2)/(e*(
b*x^2+a)/(d*x^2+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.13, antiderivative size = 252, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.227, Rules used = {6719, 422, 418, 492, 411} \[ \frac {c^{3/2} \left (a+b x^2\right ) F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{a \sqrt {d} \left (c+d x^2\right ) \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {d x \left (a+b x^2\right )}{b \left (c+d x^2\right ) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}-\frac {\sqrt {c} \sqrt {d} \left (a+b x^2\right ) E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{b \left (c+d x^2\right ) \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}} \]

Antiderivative was successfully verified.

[In]

Int[1/Sqrt[(e*(a + b*x^2))/(c + d*x^2)],x]

[Out]

(d*x*(a + b*x^2))/(b*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*(c + d*x^2)) - (Sqrt[c]*Sqrt[d]*(a + b*x^2)*EllipticE[A
rcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(b*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[(e*(a + b*x^2))/(c
 + d*x^2)]*(c + d*x^2)) + (c^(3/2)*(a + b*x^2)*EllipticF[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(a*Sqr
t[d]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*(c + d*x^2))

Rule 411

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticE[ArcTan
[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 418

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticF[ArcT
an[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 422

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[a, Int[1/(Sqrt[a + b*x^2]*Sqrt[c +
d*x^2]), x], x] + Dist[b, Int[x^2/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] && PosQ[
d/c] && PosQ[b/a]

Rule 492

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(x*Sqrt[a + b*x^2])/(b*Sqr
t[c + d*x^2]), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 6719

Int[(u_.)*((a_.)*(v_)^(m_.)*(w_)^(n_.))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a*v^m*w^n)^FracPart[p])/(v^(m*F
racPart[p])*w^(n*FracPart[p])), Int[u*v^(m*p)*w^(n*p), x], x] /; FreeQ[{a, m, n, p}, x] &&  !IntegerQ[p] &&  !
FreeQ[v, x] &&  !FreeQ[w, x]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}} \, dx &=\frac {\sqrt {a+b x^2} \int \frac {\sqrt {c+d x^2}}{\sqrt {a+b x^2}} \, dx}{\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}}\\ &=\frac {\left (c \sqrt {a+b x^2}\right ) \int \frac {1}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}}+\frac {\left (d \sqrt {a+b x^2}\right ) \int \frac {x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}}\\ &=\frac {d x \left (a+b x^2\right )}{b \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}+\frac {c^{3/2} \left (a+b x^2\right ) F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{a \sqrt {d} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}-\frac {\left (c d \sqrt {a+b x^2}\right ) \int \frac {\sqrt {a+b x^2}}{\left (c+d x^2\right )^{3/2}} \, dx}{b \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}}\\ &=\frac {d x \left (a+b x^2\right )}{b \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}-\frac {\sqrt {c} \sqrt {d} \left (a+b x^2\right ) E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{b \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}+\frac {c^{3/2} \left (a+b x^2\right ) F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{a \sqrt {d} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.06, size = 86, normalized size = 0.34 \[ \frac {\sqrt {\frac {a+b x^2}{a}} E\left (\sin ^{-1}\left (\sqrt {-\frac {b}{a}} x\right )|\frac {a d}{b c}\right )}{\sqrt {-\frac {b}{a}} \sqrt {\frac {c+d x^2}{c}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/Sqrt[(e*(a + b*x^2))/(c + d*x^2)],x]

[Out]

(Sqrt[(a + b*x^2)/a]*EllipticE[ArcSin[Sqrt[-(b/a)]*x], (a*d)/(b*c)])/(Sqrt[-(b/a)]*Sqrt[(e*(a + b*x^2))/(c + d
*x^2)]*Sqrt[(c + d*x^2)/c])

________________________________________________________________________________________

fricas [F]  time = 0.45, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (d x^{2} + c\right )} \sqrt {\frac {b e x^{2} + a e}{d x^{2} + c}}}{b e x^{2} + a e}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*(b*x^2+a)/(d*x^2+c))^(1/2),x, algorithm="fricas")

[Out]

integral((d*x^2 + c)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c))/(b*e*x^2 + a*e), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {\frac {{\left (b x^{2} + a\right )} e}{d x^{2} + c}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*(b*x^2+a)/(d*x^2+c))^(1/2),x, algorithm="giac")

[Out]

integrate(1/sqrt((b*x^2 + a)*e/(d*x^2 + c)), x)

________________________________________________________________________________________

maple [A]  time = 0.02, size = 127, normalized size = 0.50 \[ \frac {\left (b \,x^{2}+a \right ) \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, c \EllipticE \left (\sqrt {-\frac {b}{a}}\, x , \sqrt {\frac {a d}{b c}}\right )}{\sqrt {\frac {\left (b \,x^{2}+a \right ) e}{d \,x^{2}+c}}\, \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((b*x^2+a)/(d*x^2+c)*e)^(1/2),x)

[Out]

(b*x^2+a)*c*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE((-1/a*b)^(1/2)*x,(a/b/c*d)^(1/2))/((b*x^2+a)/(d*
x^2+c)*e)^(1/2)/((d*x^2+c)*(b*x^2+a))^(1/2)/(-1/a*b)^(1/2)/(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {\frac {{\left (b x^{2} + a\right )} e}{d x^{2} + c}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*(b*x^2+a)/(d*x^2+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/sqrt((b*x^2 + a)*e/(d*x^2 + c)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {1}{\sqrt {\frac {e\,\left (b\,x^2+a\right )}{d\,x^2+c}}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((e*(a + b*x^2))/(c + d*x^2))^(1/2),x)

[Out]

int(1/((e*(a + b*x^2))/(c + d*x^2))^(1/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*(b*x**2+a)/(d*x**2+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________