3.299 \(\int \frac {1}{x \sqrt {\frac {e (a+b x^2)}{c+d x^2}}} \, dx\)

Optimal. Leaf size=112 \[ \frac {\sqrt {d} \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt {b} \sqrt {e}}\right )}{\sqrt {b} \sqrt {e}}-\frac {\sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt {a} \sqrt {e}}\right )}{\sqrt {a} \sqrt {e}} \]

[Out]

-arctanh(c^(1/2)*(e*(b*x^2+a)/(d*x^2+c))^(1/2)/a^(1/2)/e^(1/2))*c^(1/2)/a^(1/2)/e^(1/2)+arctanh(d^(1/2)*(e*(b*
x^2+a)/(d*x^2+c))^(1/2)/b^(1/2)/e^(1/2))*d^(1/2)/b^(1/2)/e^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 112, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {1960, 391, 208} \[ \frac {\sqrt {d} \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt {b} \sqrt {e}}\right )}{\sqrt {b} \sqrt {e}}-\frac {\sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt {a} \sqrt {e}}\right )}{\sqrt {a} \sqrt {e}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]),x]

[Out]

-((Sqrt[c]*ArcTanh[(Sqrt[c]*Sqrt[(e*(a + b*x^2))/(c + d*x^2)])/(Sqrt[a]*Sqrt[e])])/(Sqrt[a]*Sqrt[e])) + (Sqrt[
d]*ArcTanh[(Sqrt[d]*Sqrt[(e*(a + b*x^2))/(c + d*x^2)])/(Sqrt[b]*Sqrt[e])])/(Sqrt[b]*Sqrt[e])

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 391

Int[1/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Dist[b/(b*c - a*d), Int[1/(a + b*x^n),
 x], x] - Dist[d/(b*c - a*d), Int[1/(c + d*x^n), x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0]

Rule 1960

Int[(x_)^(m_.)*(((e_.)*((a_.) + (b_.)*(x_)^(n_.)))/((c_) + (d_.)*(x_)^(n_.)))^(p_), x_Symbol] :> With[{q = Den
ominator[p]}, Dist[(q*e*(b*c - a*d))/n, Subst[Int[(x^(q*(p + 1) - 1)*(-(a*e) + c*x^q)^(Simplify[(m + 1)/n] - 1
))/(b*e - d*x^q)^(Simplify[(m + 1)/n] + 1), x], x, ((e*(a + b*x^n))/(c + d*x^n))^(1/q)], x]] /; FreeQ[{a, b, c
, d, e, m, n}, x] && FractionQ[p] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {1}{x \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}} \, dx &=((b c-a d) e) \operatorname {Subst}\left (\int \frac {1}{\left (-a e+c x^2\right ) \left (b e-d x^2\right )} \, dx,x,\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}\right )\\ &=c \operatorname {Subst}\left (\int \frac {1}{-a e+c x^2} \, dx,x,\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}\right )+d \operatorname {Subst}\left (\int \frac {1}{b e-d x^2} \, dx,x,\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}\right )\\ &=-\frac {\sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt {a} \sqrt {e}}\right )}{\sqrt {a} \sqrt {e}}+\frac {\sqrt {d} \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt {b} \sqrt {e}}\right )}{\sqrt {b} \sqrt {e}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.24, size = 190, normalized size = 1.70 \[ \frac {\sqrt {a+b x^2} \left (\sqrt {a} \sqrt {d} \sqrt {c+d x^2} \sqrt {b c-a d} \sqrt {\frac {b \left (c+d x^2\right )}{b c-a d}} \sinh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x^2}}{\sqrt {b c-a d}}\right )-b \sqrt {c} \left (c+d x^2\right ) \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+b x^2}}{\sqrt {a} \sqrt {c+d x^2}}\right )\right )}{\sqrt {a} b \left (c+d x^2\right )^{3/2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]),x]

[Out]

(Sqrt[a + b*x^2]*(Sqrt[a]*Sqrt[d]*Sqrt[b*c - a*d]*Sqrt[c + d*x^2]*Sqrt[(b*(c + d*x^2))/(b*c - a*d)]*ArcSinh[(S
qrt[d]*Sqrt[a + b*x^2])/Sqrt[b*c - a*d]] - b*Sqrt[c]*(c + d*x^2)*ArcTanh[(Sqrt[c]*Sqrt[a + b*x^2])/(Sqrt[a]*Sq
rt[c + d*x^2])]))/(Sqrt[a]*b*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*(c + d*x^2)^(3/2))

________________________________________________________________________________________

fricas [A]  time = 0.66, size = 881, normalized size = 7.87 \[ \left [\frac {1}{4} \, \sqrt {\frac {d}{b e}} \log \left (8 \, b^{2} d^{2} x^{4} + b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2} + 8 \, {\left (b^{2} c d + a b d^{2}\right )} x^{2} + 4 \, {\left (2 \, b^{2} d^{2} x^{4} + b^{2} c^{2} + a b c d + {\left (3 \, b^{2} c d + a b d^{2}\right )} x^{2}\right )} \sqrt {\frac {b e x^{2} + a e}{d x^{2} + c}} \sqrt {\frac {d}{b e}}\right ) + \frac {1}{4} \, \sqrt {\frac {c}{a e}} \log \left (\frac {{\left (b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2}\right )} x^{4} + 8 \, a^{2} c^{2} + 8 \, {\left (a b c^{2} + a^{2} c d\right )} x^{2} - 4 \, {\left ({\left (a b c d + a^{2} d^{2}\right )} x^{4} + 2 \, a^{2} c^{2} + {\left (a b c^{2} + 3 \, a^{2} c d\right )} x^{2}\right )} \sqrt {\frac {b e x^{2} + a e}{d x^{2} + c}} \sqrt {\frac {c}{a e}}}{x^{4}}\right ), -\frac {1}{2} \, \sqrt {-\frac {d}{b e}} \arctan \left (\frac {{\left (2 \, b d x^{2} + b c + a d\right )} \sqrt {\frac {b e x^{2} + a e}{d x^{2} + c}} \sqrt {-\frac {d}{b e}}}{2 \, {\left (b d x^{2} + a d\right )}}\right ) + \frac {1}{4} \, \sqrt {\frac {c}{a e}} \log \left (\frac {{\left (b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2}\right )} x^{4} + 8 \, a^{2} c^{2} + 8 \, {\left (a b c^{2} + a^{2} c d\right )} x^{2} - 4 \, {\left ({\left (a b c d + a^{2} d^{2}\right )} x^{4} + 2 \, a^{2} c^{2} + {\left (a b c^{2} + 3 \, a^{2} c d\right )} x^{2}\right )} \sqrt {\frac {b e x^{2} + a e}{d x^{2} + c}} \sqrt {\frac {c}{a e}}}{x^{4}}\right ), \frac {1}{2} \, \sqrt {-\frac {c}{a e}} \arctan \left (\frac {{\left ({\left (b c + a d\right )} x^{2} + 2 \, a c\right )} \sqrt {\frac {b e x^{2} + a e}{d x^{2} + c}} \sqrt {-\frac {c}{a e}}}{2 \, {\left (b c x^{2} + a c\right )}}\right ) + \frac {1}{4} \, \sqrt {\frac {d}{b e}} \log \left (8 \, b^{2} d^{2} x^{4} + b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2} + 8 \, {\left (b^{2} c d + a b d^{2}\right )} x^{2} + 4 \, {\left (2 \, b^{2} d^{2} x^{4} + b^{2} c^{2} + a b c d + {\left (3 \, b^{2} c d + a b d^{2}\right )} x^{2}\right )} \sqrt {\frac {b e x^{2} + a e}{d x^{2} + c}} \sqrt {\frac {d}{b e}}\right ), \frac {1}{2} \, \sqrt {-\frac {c}{a e}} \arctan \left (\frac {{\left ({\left (b c + a d\right )} x^{2} + 2 \, a c\right )} \sqrt {\frac {b e x^{2} + a e}{d x^{2} + c}} \sqrt {-\frac {c}{a e}}}{2 \, {\left (b c x^{2} + a c\right )}}\right ) - \frac {1}{2} \, \sqrt {-\frac {d}{b e}} \arctan \left (\frac {{\left (2 \, b d x^{2} + b c + a d\right )} \sqrt {\frac {b e x^{2} + a e}{d x^{2} + c}} \sqrt {-\frac {d}{b e}}}{2 \, {\left (b d x^{2} + a d\right )}}\right )\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(e*(b*x^2+a)/(d*x^2+c))^(1/2),x, algorithm="fricas")

[Out]

[1/4*sqrt(d/(b*e))*log(8*b^2*d^2*x^4 + b^2*c^2 + 6*a*b*c*d + a^2*d^2 + 8*(b^2*c*d + a*b*d^2)*x^2 + 4*(2*b^2*d^
2*x^4 + b^2*c^2 + a*b*c*d + (3*b^2*c*d + a*b*d^2)*x^2)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c))*sqrt(d/(b*e))) + 1/4*
sqrt(c/(a*e))*log(((b^2*c^2 + 6*a*b*c*d + a^2*d^2)*x^4 + 8*a^2*c^2 + 8*(a*b*c^2 + a^2*c*d)*x^2 - 4*((a*b*c*d +
 a^2*d^2)*x^4 + 2*a^2*c^2 + (a*b*c^2 + 3*a^2*c*d)*x^2)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c))*sqrt(c/(a*e)))/x^4),
-1/2*sqrt(-d/(b*e))*arctan(1/2*(2*b*d*x^2 + b*c + a*d)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c))*sqrt(-d/(b*e))/(b*d*x
^2 + a*d)) + 1/4*sqrt(c/(a*e))*log(((b^2*c^2 + 6*a*b*c*d + a^2*d^2)*x^4 + 8*a^2*c^2 + 8*(a*b*c^2 + a^2*c*d)*x^
2 - 4*((a*b*c*d + a^2*d^2)*x^4 + 2*a^2*c^2 + (a*b*c^2 + 3*a^2*c*d)*x^2)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c))*sqrt
(c/(a*e)))/x^4), 1/2*sqrt(-c/(a*e))*arctan(1/2*((b*c + a*d)*x^2 + 2*a*c)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c))*sqr
t(-c/(a*e))/(b*c*x^2 + a*c)) + 1/4*sqrt(d/(b*e))*log(8*b^2*d^2*x^4 + b^2*c^2 + 6*a*b*c*d + a^2*d^2 + 8*(b^2*c*
d + a*b*d^2)*x^2 + 4*(2*b^2*d^2*x^4 + b^2*c^2 + a*b*c*d + (3*b^2*c*d + a*b*d^2)*x^2)*sqrt((b*e*x^2 + a*e)/(d*x
^2 + c))*sqrt(d/(b*e))), 1/2*sqrt(-c/(a*e))*arctan(1/2*((b*c + a*d)*x^2 + 2*a*c)*sqrt((b*e*x^2 + a*e)/(d*x^2 +
 c))*sqrt(-c/(a*e))/(b*c*x^2 + a*c)) - 1/2*sqrt(-d/(b*e))*arctan(1/2*(2*b*d*x^2 + b*c + a*d)*sqrt((b*e*x^2 + a
*e)/(d*x^2 + c))*sqrt(-d/(b*e))/(b*d*x^2 + a*d))]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(e*(b*x^2+a)/(d*x^2+c))^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Warn
ing, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Check [ab
s(t_nostep*d+c)]Unable to divide, perhaps due to rounding error%%%{%%%{1,[2,1,2]%%%},[2,3,0]%%%}+%%%{%%%{-2,[1
,2,2]%%%},[2,2,1]%%%}+%%%{%%%{1,[0,3,2]%%%},[2,1,2]%%%}+%%%{%%{[%%%{-2,[2,0,2]%%%},0]:[1,0,%%%{-1,[1,1,1]%%%}]
%%},[1,4,0]%%%}+%%%{%%{[%%%{4,[1,1,2]%%%},0]:[1,0,%%%{-1,[1,1,1]%%%}]%%},[1,3,1]%%%}+%%%{%%{[%%%{-2,[0,2,2]%%%
},0]:[1,0,%%%{-1,[1,1,1]%%%}]%%},[1,2,2]%%%}+%%%{%%%{1,[3,0,3]%%%},[0,5,0]%%%}+%%%{%%%{-2,[2,1,3]%%%},[0,4,1]%
%%}+%%%{%%%{1,[1,2,3]%%%},[0,3,2]%%%} / %%%{%%%{1,[0,2,0]%%%},[2,0,0]%%%}+%%%{%%{[%%%{-2,[0,1,0]%%%},0]:[1,0,%
%%{-1,[1,1,1]%%%}]%%},[1,1,0]%%%}+%%%{%%%{1,[1,1,1]%%%},[0,2,0]%%%} Error: Bad Argument Value

________________________________________________________________________________________

maple [B]  time = 0.04, size = 179, normalized size = 1.60 \[ \frac {\left (b \,x^{2}+a \right ) \left (-\sqrt {b d}\, c \ln \left (\frac {a d \,x^{2}+b c \,x^{2}+2 a c +2 \sqrt {a c}\, \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}}{x^{2}}\right )+\sqrt {a c}\, d \ln \left (\frac {2 b d \,x^{2}+a d +b c +2 \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {b d}}{2 \sqrt {b d}}\right )\right )}{2 \sqrt {\frac {\left (b \,x^{2}+a \right ) e}{d \,x^{2}+c}}\, \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {b d}\, \sqrt {a c}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/((b*x^2+a)/(d*x^2+c)*e)^(1/2),x)

[Out]

1/2*(b*x^2+a)*(d*ln(1/2*(2*b*d*x^2+a*d+b*c+2*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(b*d)^(1/2))/(b*d)^(1/2))*(a*
c)^(1/2)-c*ln((a*d*x^2+b*c*x^2+2*a*c+2*(a*c)^(1/2)*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2))/x^2)*(b*d)^(1/2))/((b*
x^2+a)/(d*x^2+c)*e)^(1/2)/((d*x^2+c)*(b*x^2+a))^(1/2)/(b*d)^(1/2)/(a*c)^(1/2)

________________________________________________________________________________________

maxima [A]  time = 1.96, size = 155, normalized size = 1.38 \[ \frac {1}{2} \, e {\left (\frac {c \log \left (\frac {c \sqrt {\frac {{\left (b x^{2} + a\right )} e}{d x^{2} + c}} - \sqrt {a c e}}{c \sqrt {\frac {{\left (b x^{2} + a\right )} e}{d x^{2} + c}} + \sqrt {a c e}}\right )}{\sqrt {a c e} e} - \frac {d \log \left (\frac {d \sqrt {\frac {{\left (b x^{2} + a\right )} e}{d x^{2} + c}} - \sqrt {b d e}}{d \sqrt {\frac {{\left (b x^{2} + a\right )} e}{d x^{2} + c}} + \sqrt {b d e}}\right )}{\sqrt {b d e} e}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(e*(b*x^2+a)/(d*x^2+c))^(1/2),x, algorithm="maxima")

[Out]

1/2*e*(c*log((c*sqrt((b*x^2 + a)*e/(d*x^2 + c)) - sqrt(a*c*e))/(c*sqrt((b*x^2 + a)*e/(d*x^2 + c)) + sqrt(a*c*e
)))/(sqrt(a*c*e)*e) - d*log((d*sqrt((b*x^2 + a)*e/(d*x^2 + c)) - sqrt(b*d*e))/(d*sqrt((b*x^2 + a)*e/(d*x^2 + c
)) + sqrt(b*d*e)))/(sqrt(b*d*e)*e))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{x\,\sqrt {\frac {e\,\left (b\,x^2+a\right )}{d\,x^2+c}}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x*((e*(a + b*x^2))/(c + d*x^2))^(1/2)),x)

[Out]

int(1/(x*((e*(a + b*x^2))/(c + d*x^2))^(1/2)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(e*(b*x**2+a)/(d*x**2+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________