3.286 \(\int \frac {(\frac {e (a+b x^2)}{c+d x^2})^{3/2}}{x^2} \, dx\)

Optimal. Leaf size=307 \[ \frac {e (b c-2 a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{c^{3/2} \sqrt {d} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+\frac {e \left (c+d x^2\right ) (b c-2 a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{c^2 d x}-\frac {e x (b c-2 a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{c^2}-\frac {e (b c-a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{c d x}+\frac {b e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{\sqrt {c} \sqrt {d} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}} \]

[Out]

-(-a*d+b*c)*e*(e*(b*x^2+a)/(d*x^2+c))^(1/2)/c/d/x-(-2*a*d+b*c)*e*x*(e*(b*x^2+a)/(d*x^2+c))^(1/2)/c^2+(-2*a*d+b
*c)*e*(d*x^2+c)*(e*(b*x^2+a)/(d*x^2+c))^(1/2)/c^2/d/x+(-2*a*d+b*c)*e*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*E
llipticE(x*d^(1/2)/c^(1/2)/(1+d*x^2/c)^(1/2),(1-b*c/a/d)^(1/2))*(e*(b*x^2+a)/(d*x^2+c))^(1/2)/c^(3/2)/d^(1/2)/
(c*(b*x^2+a)/a/(d*x^2+c))^(1/2)+b*e*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticF(x*d^(1/2)/c^(1/2)/(1+d*x
^2/c)^(1/2),(1-b*c/a/d)^(1/2))*(e*(b*x^2+a)/(d*x^2+c))^(1/2)/c^(1/2)/d^(1/2)/(c*(b*x^2+a)/a/(d*x^2+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.45, antiderivative size = 307, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.269, Rules used = {6719, 468, 583, 531, 418, 492, 411} \[ \frac {e \left (c+d x^2\right ) (b c-2 a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{c^2 d x}-\frac {e x (b c-2 a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{c^2}+\frac {e (b c-2 a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{c^{3/2} \sqrt {d} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-\frac {e (b c-a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{c d x}+\frac {b e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{\sqrt {c} \sqrt {d} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}} \]

Antiderivative was successfully verified.

[In]

Int[((e*(a + b*x^2))/(c + d*x^2))^(3/2)/x^2,x]

[Out]

-(((b*c - a*d)*e*Sqrt[(e*(a + b*x^2))/(c + d*x^2)])/(c*d*x)) - ((b*c - 2*a*d)*e*x*Sqrt[(e*(a + b*x^2))/(c + d*
x^2)])/c^2 + ((b*c - 2*a*d)*e*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*(c + d*x^2))/(c^2*d*x) + ((b*c - 2*a*d)*e*Sqrt
[(e*(a + b*x^2))/(c + d*x^2)]*EllipticE[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(c^(3/2)*Sqrt[d]*Sqrt[(
c*(a + b*x^2))/(a*(c + d*x^2))]) + (b*e*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*EllipticF[ArcTan[(Sqrt[d]*x)/Sqrt[c]
], 1 - (b*c)/(a*d)])/(Sqrt[c]*Sqrt[d]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))])

Rule 411

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticE[ArcTan
[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 418

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticF[ArcT
an[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 468

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> -Simp[((c*b -
 a*d)*(e*x)^(m + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 1))/(a*b*e*n*(p + 1)), x] + Dist[1/(a*b*n*(p + 1)), I
nt[(e*x)^m*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 2)*Simp[c*(c*b*n*(p + 1) + (c*b - a*d)*(m + 1)) + d*(c*b*n*(p
+ 1) + (c*b - a*d)*(m + n*(q - 1) + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b*c - a*d, 0] &
& IGtQ[n, 0] && LtQ[p, -1] && GtQ[q, 1] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 492

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(x*Sqrt[a + b*x^2])/(b*Sqr
t[c + d*x^2]), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 531

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Dist[
e, Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Dist[f, Int[x^n*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a,
b, c, d, e, f, n, p, q}, x]

Rule 583

Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
x_Symbol] :> Simp[(e*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(a*c*g*(m + 1)), x] + Dist[1/(a*c*
g^n*(m + 1)), Int[(g*x)^(m + n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*f*c*(m + 1) - e*(b*c + a*d)*(m + n + 1) - e
*n*(b*c*p + a*d*q) - b*e*d*(m + n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, q}, x] &&
 IGtQ[n, 0] && LtQ[m, -1]

Rule 6719

Int[(u_.)*((a_.)*(v_)^(m_.)*(w_)^(n_.))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a*v^m*w^n)^FracPart[p])/(v^(m*F
racPart[p])*w^(n*FracPart[p])), Int[u*v^(m*p)*w^(n*p), x], x] /; FreeQ[{a, m, n, p}, x] &&  !IntegerQ[p] &&  !
FreeQ[v, x] &&  !FreeQ[w, x]

Rubi steps

\begin {align*} \int \frac {\left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2}}{x^2} \, dx &=\frac {\left (e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}\right ) \int \frac {\left (a+b x^2\right )^{3/2}}{x^2 \left (c+d x^2\right )^{3/2}} \, dx}{\sqrt {a+b x^2}}\\ &=-\frac {(b c-a d) e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{c d x}-\frac {\left (e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}\right ) \int \frac {a (b c-2 a d)-a b d x^2}{x^2 \sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{c d \sqrt {a+b x^2}}\\ &=-\frac {(b c-a d) e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{c d x}+\frac {(b c-2 a d) e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{c^2 d x}+\frac {\left (e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}\right ) \int \frac {a^2 b c d-a b d (b c-2 a d) x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{a c^2 d \sqrt {a+b x^2}}\\ &=-\frac {(b c-a d) e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{c d x}+\frac {(b c-2 a d) e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{c^2 d x}+\frac {\left (a b e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}\right ) \int \frac {1}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{c \sqrt {a+b x^2}}-\frac {\left (b (b c-2 a d) e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}\right ) \int \frac {x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{c^2 \sqrt {a+b x^2}}\\ &=-\frac {(b c-a d) e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{c d x}-\frac {(b c-2 a d) e x \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{c^2}+\frac {(b c-2 a d) e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{c^2 d x}+\frac {b e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{\sqrt {c} \sqrt {d} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+\frac {\left ((b c-2 a d) e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}\right ) \int \frac {\sqrt {a+b x^2}}{\left (c+d x^2\right )^{3/2}} \, dx}{c \sqrt {a+b x^2}}\\ &=-\frac {(b c-a d) e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{c d x}-\frac {(b c-2 a d) e x \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{c^2}+\frac {(b c-2 a d) e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{c^2 d x}+\frac {(b c-2 a d) e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{c^{3/2} \sqrt {d} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+\frac {b e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{\sqrt {c} \sqrt {d} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.36, size = 228, normalized size = 0.74 \[ -\frac {e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (d \sqrt {\frac {b}{a}} \left (a+b x^2\right ) \left (a c+2 a d x^2-b c x^2\right )-i b c x \sqrt {\frac {b x^2}{a}+1} \sqrt {\frac {d x^2}{c}+1} (a d-b c) F\left (i \sinh ^{-1}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )+i b c x \sqrt {\frac {b x^2}{a}+1} \sqrt {\frac {d x^2}{c}+1} (2 a d-b c) E\left (i \sinh ^{-1}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )\right )}{c^2 d x \sqrt {\frac {b}{a}} \left (a+b x^2\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[((e*(a + b*x^2))/(c + d*x^2))^(3/2)/x^2,x]

[Out]

-((e*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*(Sqrt[b/a]*d*(a + b*x^2)*(a*c - b*c*x^2 + 2*a*d*x^2) + I*b*c*(-(b*c) +
2*a*d)*x*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*EllipticE[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)] - I*b*c*(-(b*c
) + a*d)*x*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*EllipticF[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)]))/(Sqrt[b/a]
*c^2*d*x*(a + b*x^2)))

________________________________________________________________________________________

fricas [F]  time = 0.45, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (b e x^{2} + a e\right )} \sqrt {\frac {b e x^{2} + a e}{d x^{2} + c}}}{d x^{4} + c x^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*(b*x^2+a)/(d*x^2+c))^(3/2)/x^2,x, algorithm="fricas")

[Out]

integral((b*e*x^2 + a*e)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c))/(d*x^4 + c*x^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (\frac {{\left (b x^{2} + a\right )} e}{d x^{2} + c}\right )^{\frac {3}{2}}}{x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*(b*x^2+a)/(d*x^2+c))^(3/2)/x^2,x, algorithm="giac")

[Out]

integrate(((b*x^2 + a)*e/(d*x^2 + c))^(3/2)/x^2, x)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 670, normalized size = 2.18 \[ -\frac {\left (\frac {\left (b \,x^{2}+a \right ) e}{d \,x^{2}+c}\right )^{\frac {3}{2}} \left (d \,x^{2}+c \right ) \left (\sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {-\frac {b}{a}}\, a b \,d^{2} x^{4}+\sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {-\frac {b}{a}}\, a b \,d^{2} x^{4}-\sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {-\frac {b}{a}}\, b^{2} c d \,x^{4}+\sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {-\frac {b}{a}}\, a^{2} d^{2} x^{2}+\sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {-\frac {b}{a}}\, a^{2} d^{2} x^{2}+\sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {-\frac {b}{a}}\, a b c d \,x^{2}-\sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {-\frac {b}{a}}\, a b c d \,x^{2}-2 \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, a b c d x \EllipticE \left (\sqrt {-\frac {b}{a}}\, x , \sqrt {\frac {a d}{b c}}\right )+\sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, a b c d x \EllipticF \left (\sqrt {-\frac {b}{a}}\, x , \sqrt {\frac {a d}{b c}}\right )+\sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, b^{2} c^{2} x \EllipticE \left (\sqrt {-\frac {b}{a}}\, x , \sqrt {\frac {a d}{b c}}\right )-\sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, b^{2} c^{2} x \EllipticF \left (\sqrt {-\frac {b}{a}}\, x , \sqrt {\frac {a d}{b c}}\right )+\sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {-\frac {b}{a}}\, a^{2} c d \right )}{\left (b \,x^{2}+a \right )^{2} \sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, c^{2} d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((b*x^2+a)/(d*x^2+c)*e)^(3/2)/x^2,x)

[Out]

-((b*x^2+a)/(d*x^2+c)*e)^(3/2)*(d*x^2+c)*(((d*x^2+c)*(b*x^2+a))^(1/2)*(-1/a*b)^(1/2)*x^4*a*b*d^2+(b*d*x^4+a*d*
x^2+b*c*x^2+a*c)^(1/2)*(-1/a*b)^(1/2)*x^4*a*b*d^2-(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(-1/a*b)^(1/2)*x^4*b^2*c
*d+((d*x^2+c)*(b*x^2+a))^(1/2)*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF((-1/a*b)^(1/2)*x,(a/b/c*d)^(1
/2))*x*a*b*c*d-((d*x^2+c)*(b*x^2+a))^(1/2)*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF((-1/a*b)^(1/2)*x,
(a/b/c*d)^(1/2))*x*b^2*c^2-2*((d*x^2+c)*(b*x^2+a))^(1/2)*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE((-1
/a*b)^(1/2)*x,(a/b/c*d)^(1/2))*x*a*b*c*d+((d*x^2+c)*(b*x^2+a))^(1/2)*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*E
llipticE((-1/a*b)^(1/2)*x,(a/b/c*d)^(1/2))*x*b^2*c^2+((d*x^2+c)*(b*x^2+a))^(1/2)*(-1/a*b)^(1/2)*x^2*a^2*d^2+((
d*x^2+c)*(b*x^2+a))^(1/2)*(-1/a*b)^(1/2)*x^2*a*b*c*d+(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(-1/a*b)^(1/2)*x^2*a^
2*d^2-(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(-1/a*b)^(1/2)*x^2*a*b*c*d+((d*x^2+c)*(b*x^2+a))^(1/2)*(-1/a*b)^(1/2
)*a^2*c*d)/(b*x^2+a)^2/c^2/x/(-1/a*b)^(1/2)/(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (\frac {{\left (b x^{2} + a\right )} e}{d x^{2} + c}\right )^{\frac {3}{2}}}{x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*(b*x^2+a)/(d*x^2+c))^(3/2)/x^2,x, algorithm="maxima")

[Out]

integrate(((b*x^2 + a)*e/(d*x^2 + c))^(3/2)/x^2, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\left (\frac {e\,\left (b\,x^2+a\right )}{d\,x^2+c}\right )}^{3/2}}{x^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((e*(a + b*x^2))/(c + d*x^2))^(3/2)/x^2,x)

[Out]

int(((e*(a + b*x^2))/(c + d*x^2))^(3/2)/x^2, x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*(b*x**2+a)/(d*x**2+c))**(3/2)/x**2,x)

[Out]

Timed out

________________________________________________________________________________________