3.284 \(\int x^2 (\frac {e (a+b x^2)}{c+d x^2})^{3/2} \, dx\)

Optimal. Leaf size=310 \[ -\frac {\sqrt {c} e (4 b c-3 a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 d^{5/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+\frac {\sqrt {c} e (8 b c-7 a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 d^{5/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+\frac {4 b e x \left (c+d x^2\right ) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{3 d^2}-\frac {e x (8 b c-7 a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{3 d^2}-\frac {e x \left (a+b x^2\right ) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{d} \]

[Out]

-1/3*(-7*a*d+8*b*c)*e*x*(e*(b*x^2+a)/(d*x^2+c))^(1/2)/d^2-e*x*(b*x^2+a)*(e*(b*x^2+a)/(d*x^2+c))^(1/2)/d+4/3*b*
e*x*(d*x^2+c)*(e*(b*x^2+a)/(d*x^2+c))^(1/2)/d^2+1/3*(-7*a*d+8*b*c)*e*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*E
llipticE(x*d^(1/2)/c^(1/2)/(1+d*x^2/c)^(1/2),(1-b*c/a/d)^(1/2))*c^(1/2)*(e*(b*x^2+a)/(d*x^2+c))^(1/2)/d^(5/2)/
(c*(b*x^2+a)/a/(d*x^2+c))^(1/2)-1/3*(-3*a*d+4*b*c)*e*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticF(x*d^(1/
2)/c^(1/2)/(1+d*x^2/c)^(1/2),(1-b*c/a/d)^(1/2))*c^(1/2)*(e*(b*x^2+a)/(d*x^2+c))^(1/2)/d^(5/2)/(c*(b*x^2+a)/a/(
d*x^2+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.44, antiderivative size = 310, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.269, Rules used = {6719, 467, 528, 531, 418, 492, 411} \[ \frac {4 b e x \left (c+d x^2\right ) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{3 d^2}-\frac {e x (8 b c-7 a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{3 d^2}-\frac {\sqrt {c} e (4 b c-3 a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 d^{5/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+\frac {\sqrt {c} e (8 b c-7 a d) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 d^{5/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-\frac {e x \left (a+b x^2\right ) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{d} \]

Antiderivative was successfully verified.

[In]

Int[x^2*((e*(a + b*x^2))/(c + d*x^2))^(3/2),x]

[Out]

-((8*b*c - 7*a*d)*e*x*Sqrt[(e*(a + b*x^2))/(c + d*x^2)])/(3*d^2) - (e*x*(a + b*x^2)*Sqrt[(e*(a + b*x^2))/(c +
d*x^2)])/d + (4*b*e*x*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*(c + d*x^2))/(3*d^2) + (Sqrt[c]*(8*b*c - 7*a*d)*e*Sqrt
[(e*(a + b*x^2))/(c + d*x^2)]*EllipticE[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(3*d^(5/2)*Sqrt[(c*(a +
 b*x^2))/(a*(c + d*x^2))]) - (Sqrt[c]*(4*b*c - 3*a*d)*e*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*EllipticF[ArcTan[(Sq
rt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(3*d^(5/2)*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))])

Rule 411

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticE[ArcTan
[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 418

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticF[ArcT
an[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 467

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e^(n -
1)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q)/(b*n*(p + 1)), x] - Dist[e^n/(b*n*(p + 1)), Int[(e*x)^
(m - n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 1)*Simp[c*(m - n + 1) + d*(m + n*(q - 1) + 1)*x^n, x], x], x] /;
FreeQ[{a, b, c, d, e}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[q, 0] && GtQ[m - n + 1, 0] &
& IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 492

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(x*Sqrt[a + b*x^2])/(b*Sqr
t[c + d*x^2]), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 528

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Simp[
(f*x*(a + b*x^n)^(p + 1)*(c + d*x^n)^q)/(b*(n*(p + q + 1) + 1)), x] + Dist[1/(b*(n*(p + q + 1) + 1)), Int[(a +
 b*x^n)^p*(c + d*x^n)^(q - 1)*Simp[c*(b*e - a*f + b*e*n*(p + q + 1)) + (d*(b*e - a*f) + f*n*q*(b*c - a*d) + b*
d*e*n*(p + q + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && GtQ[q, 0] && NeQ[n*(p + q + 1) + 1
, 0]

Rule 531

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Dist[
e, Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Dist[f, Int[x^n*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a,
b, c, d, e, f, n, p, q}, x]

Rule 6719

Int[(u_.)*((a_.)*(v_)^(m_.)*(w_)^(n_.))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a*v^m*w^n)^FracPart[p])/(v^(m*F
racPart[p])*w^(n*FracPart[p])), Int[u*v^(m*p)*w^(n*p), x], x] /; FreeQ[{a, m, n, p}, x] &&  !IntegerQ[p] &&  !
FreeQ[v, x] &&  !FreeQ[w, x]

Rubi steps

\begin {align*} \int x^2 \left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2} \, dx &=\frac {\left (e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}\right ) \int \frac {x^2 \left (a+b x^2\right )^{3/2}}{\left (c+d x^2\right )^{3/2}} \, dx}{\sqrt {a+b x^2}}\\ &=-\frac {e x \left (a+b x^2\right ) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{d}+\frac {\left (e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}\right ) \int \frac {\sqrt {a+b x^2} \left (a+4 b x^2\right )}{\sqrt {c+d x^2}} \, dx}{d \sqrt {a+b x^2}}\\ &=-\frac {e x \left (a+b x^2\right ) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{d}+\frac {4 b e x \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{3 d^2}+\frac {\left (e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}\right ) \int \frac {-a (4 b c-3 a d)-b (8 b c-7 a d) x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{3 d^2 \sqrt {a+b x^2}}\\ &=-\frac {e x \left (a+b x^2\right ) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{d}+\frac {4 b e x \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{3 d^2}-\frac {\left (b (8 b c-7 a d) e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}\right ) \int \frac {x^2}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{3 d^2 \sqrt {a+b x^2}}-\frac {\left (a (4 b c-3 a d) e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}\right ) \int \frac {1}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx}{3 d^2 \sqrt {a+b x^2}}\\ &=-\frac {(8 b c-7 a d) e x \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{3 d^2}-\frac {e x \left (a+b x^2\right ) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{d}+\frac {4 b e x \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{3 d^2}-\frac {\sqrt {c} (4 b c-3 a d) e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 d^{5/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+\frac {\left (c (8 b c-7 a d) e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \sqrt {c+d x^2}\right ) \int \frac {\sqrt {a+b x^2}}{\left (c+d x^2\right )^{3/2}} \, dx}{3 d^2 \sqrt {a+b x^2}}\\ &=-\frac {(8 b c-7 a d) e x \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{3 d^2}-\frac {e x \left (a+b x^2\right ) \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}{d}+\frac {4 b e x \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{3 d^2}+\frac {\sqrt {c} (8 b c-7 a d) e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 d^{5/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-\frac {\sqrt {c} (4 b c-3 a d) e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} F\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{3 d^{5/2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.42, size = 235, normalized size = 0.76 \[ -\frac {e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (i \sqrt {\frac {b x^2}{a}+1} \sqrt {\frac {d x^2}{c}+1} \left (3 a^2 d^2-11 a b c d+8 b^2 c^2\right ) F\left (i \sinh ^{-1}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )+d x \sqrt {\frac {b}{a}} \left (a+b x^2\right ) \left (3 a d-b \left (4 c+d x^2\right )\right )+i b c \sqrt {\frac {b x^2}{a}+1} \sqrt {\frac {d x^2}{c}+1} (7 a d-8 b c) E\left (i \sinh ^{-1}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )\right )}{3 d^3 \sqrt {\frac {b}{a}} \left (a+b x^2\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[x^2*((e*(a + b*x^2))/(c + d*x^2))^(3/2),x]

[Out]

-1/3*(e*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*(Sqrt[b/a]*d*x*(a + b*x^2)*(3*a*d - b*(4*c + d*x^2)) + I*b*c*(-8*b*c
 + 7*a*d)*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*EllipticE[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)] + I*(8*b^2*c^
2 - 11*a*b*c*d + 3*a^2*d^2)*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*EllipticF[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b
*c)]))/(Sqrt[b/a]*d^3*(a + b*x^2))

________________________________________________________________________________________

fricas [F]  time = 0.47, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (b e x^{4} + a e x^{2}\right )} \sqrt {\frac {b e x^{2} + a e}{d x^{2} + c}}}{d x^{2} + c}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(e*(b*x^2+a)/(d*x^2+c))^(3/2),x, algorithm="fricas")

[Out]

integral((b*e*x^4 + a*e*x^2)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c))/(d*x^2 + c), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (\frac {{\left (b x^{2} + a\right )} e}{d x^{2} + c}\right )^{\frac {3}{2}} x^{2}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(e*(b*x^2+a)/(d*x^2+c))^(3/2),x, algorithm="giac")

[Out]

integrate(((b*x^2 + a)*e/(d*x^2 + c))^(3/2)*x^2, x)

________________________________________________________________________________________

maple [B]  time = 0.03, size = 734, normalized size = 2.37 \[ \frac {\left (\frac {\left (b \,x^{2}+a \right ) e}{d \,x^{2}+c}\right )^{\frac {3}{2}} \left (d \,x^{2}+c \right ) \left (\sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {-\frac {b}{a}}\, b^{2} d^{2} x^{5}+\sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {-\frac {b}{a}}\, a b \,d^{2} x^{3}-3 \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {-\frac {b}{a}}\, a b \,d^{2} x^{3}+\sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {-\frac {b}{a}}\, b^{2} c d \,x^{3}+3 \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {-\frac {b}{a}}\, b^{2} c d \,x^{3}-3 \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {-\frac {b}{a}}\, a^{2} d^{2} x +3 \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, a^{2} d^{2} \EllipticF \left (\sqrt {-\frac {b}{a}}\, x , \sqrt {\frac {a d}{b c}}\right )+\sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {-\frac {b}{a}}\, a b c d x +3 \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {-\frac {b}{a}}\, a b c d x +7 \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, a b c d \EllipticE \left (\sqrt {-\frac {b}{a}}\, x , \sqrt {\frac {a d}{b c}}\right )-11 \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, a b c d \EllipticF \left (\sqrt {-\frac {b}{a}}\, x , \sqrt {\frac {a d}{b c}}\right )-8 \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, b^{2} c^{2} \EllipticE \left (\sqrt {-\frac {b}{a}}\, x , \sqrt {\frac {a d}{b c}}\right )+8 \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, b^{2} c^{2} \EllipticF \left (\sqrt {-\frac {b}{a}}\, x , \sqrt {\frac {a d}{b c}}\right )\right )}{3 \left (b \,x^{2}+a \right )^{2} \sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, d^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*((b*x^2+a)/(d*x^2+c)*e)^(3/2),x)

[Out]

1/3*((b*x^2+a)/(d*x^2+c)*e)^(3/2)*(d*x^2+c)*(((d*x^2+c)*(b*x^2+a))^(1/2)*(-1/a*b)^(1/2)*x^5*b^2*d^2+((d*x^2+c)
*(b*x^2+a))^(1/2)*(-1/a*b)^(1/2)*x^3*a*b*d^2+((d*x^2+c)*(b*x^2+a))^(1/2)*(-1/a*b)^(1/2)*x^3*b^2*c*d-3*(b*d*x^4
+a*d*x^2+b*c*x^2+a*c)^(1/2)*(-1/a*b)^(1/2)*x^3*a*b*d^2+3*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(-1/a*b)^(1/2)*x^
3*b^2*c*d+3*((d*x^2+c)*(b*x^2+a))^(1/2)*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF((-1/a*b)^(1/2)*x,(a/
b/c*d)^(1/2))*a^2*d^2-11*((d*x^2+c)*(b*x^2+a))^(1/2)*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF((-1/a*b
)^(1/2)*x,(a/b/c*d)^(1/2))*a*b*c*d+8*((d*x^2+c)*(b*x^2+a))^(1/2)*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*Ellip
ticF((-1/a*b)^(1/2)*x,(a/b/c*d)^(1/2))*b^2*c^2+7*((d*x^2+c)*(b*x^2+a))^(1/2)*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)
^(1/2)*EllipticE((-1/a*b)^(1/2)*x,(a/b/c*d)^(1/2))*a*b*c*d-8*((d*x^2+c)*(b*x^2+a))^(1/2)*((b*x^2+a)/a)^(1/2)*(
(d*x^2+c)/c)^(1/2)*EllipticE((-1/a*b)^(1/2)*x,(a/b/c*d)^(1/2))*b^2*c^2+((d*x^2+c)*(b*x^2+a))^(1/2)*(-1/a*b)^(1
/2)*x*a*b*c*d-3*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(-1/a*b)^(1/2)*x*a^2*d^2+3*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(
1/2)*(-1/a*b)^(1/2)*x*a*b*c*d)/(b*x^2+a)^2/d^3/(-1/a*b)^(1/2)/(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (\frac {{\left (b x^{2} + a\right )} e}{d x^{2} + c}\right )^{\frac {3}{2}} x^{2}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(e*(b*x^2+a)/(d*x^2+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(((b*x^2 + a)*e/(d*x^2 + c))^(3/2)*x^2, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int x^2\,{\left (\frac {e\,\left (b\,x^2+a\right )}{d\,x^2+c}\right )}^{3/2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*((e*(a + b*x^2))/(c + d*x^2))^(3/2),x)

[Out]

int(x^2*((e*(a + b*x^2))/(c + d*x^2))^(3/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(e*(b*x**2+a)/(d*x**2+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________