3.247 \(\int \frac {(\frac {c}{a+b x^2})^{3/2}}{x^2} \, dx\)

Optimal. Leaf size=48 \[ -\frac {2 b c x \sqrt {\frac {c}{a+b x^2}}}{a^2}-\frac {c \sqrt {\frac {c}{a+b x^2}}}{a x} \]

[Out]

-c*(c/(b*x^2+a))^(1/2)/a/x-2*b*c*x*(c/(b*x^2+a))^(1/2)/a^2

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 48, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.158, Rules used = {6720, 271, 191} \[ -\frac {2 b c x \sqrt {\frac {c}{a+b x^2}}}{a^2}-\frac {c \sqrt {\frac {c}{a+b x^2}}}{a x} \]

Antiderivative was successfully verified.

[In]

Int[(c/(a + b*x^2))^(3/2)/x^2,x]

[Out]

-((c*Sqrt[c/(a + b*x^2)])/(a*x)) - (2*b*c*x*Sqrt[c/(a + b*x^2)])/a^2

Rule 191

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x*(a + b*x^n)^(p + 1))/a, x] /; FreeQ[{a, b, n, p}, x] &
& EqQ[1/n + p + 1, 0]

Rule 271

Int[(x_)^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x^(m + 1)*(a + b*x^n)^(p + 1))/(a*(m + 1)), x]
 - Dist[(b*(m + n*(p + 1) + 1))/(a*(m + 1)), Int[x^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, m, n, p}, x]
&& ILtQ[Simplify[(m + 1)/n + p + 1], 0] && NeQ[m, -1]

Rule 6720

Int[(u_.)*((a_.)*(v_)^(m_.))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a*v^m)^FracPart[p])/v^(m*FracPart[p]), Int
[u*v^(m*p), x], x] /; FreeQ[{a, m, p}, x] &&  !IntegerQ[p] &&  !FreeQ[v, x] &&  !(EqQ[a, 1] && EqQ[m, 1]) &&
!(EqQ[v, x] && EqQ[m, 1])

Rubi steps

\begin {align*} \int \frac {\left (\frac {c}{a+b x^2}\right )^{3/2}}{x^2} \, dx &=\left (c \sqrt {\frac {c}{a+b x^2}} \sqrt {a+b x^2}\right ) \int \frac {1}{x^2 \left (a+b x^2\right )^{3/2}} \, dx\\ &=-\frac {c \sqrt {\frac {c}{a+b x^2}}}{a x}-\frac {\left (2 b c \sqrt {\frac {c}{a+b x^2}} \sqrt {a+b x^2}\right ) \int \frac {1}{\left (a+b x^2\right )^{3/2}} \, dx}{a}\\ &=-\frac {c \sqrt {\frac {c}{a+b x^2}}}{a x}-\frac {2 b c x \sqrt {\frac {c}{a+b x^2}}}{a^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 32, normalized size = 0.67 \[ -\frac {c \left (a+2 b x^2\right ) \sqrt {\frac {c}{a+b x^2}}}{a^2 x} \]

Antiderivative was successfully verified.

[In]

Integrate[(c/(a + b*x^2))^(3/2)/x^2,x]

[Out]

-((c*Sqrt[c/(a + b*x^2)]*(a + 2*b*x^2))/(a^2*x))

________________________________________________________________________________________

fricas [A]  time = 0.45, size = 32, normalized size = 0.67 \[ -\frac {{\left (2 \, b c x^{2} + a c\right )} \sqrt {\frac {c}{b x^{2} + a}}}{a^{2} x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c/(b*x^2+a))^(3/2)/x^2,x, algorithm="fricas")

[Out]

-(2*b*c*x^2 + a*c)*sqrt(c/(b*x^2 + a))/(a^2*x)

________________________________________________________________________________________

giac [A]  time = 0.34, size = 81, normalized size = 1.69 \[ -{\left (\frac {b c x \mathrm {sgn}\left (b x^{2} + a\right )}{\sqrt {b c x^{2} + a c} a^{2}} - \frac {2 \, \sqrt {b c} c \mathrm {sgn}\left (b x^{2} + a\right )}{{\left ({\left (\sqrt {b c} x - \sqrt {b c x^{2} + a c}\right )}^{2} - a c\right )} a}\right )} c \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c/(b*x^2+a))^(3/2)/x^2,x, algorithm="giac")

[Out]

-(b*c*x*sgn(b*x^2 + a)/(sqrt(b*c*x^2 + a*c)*a^2) - 2*sqrt(b*c)*c*sgn(b*x^2 + a)/(((sqrt(b*c)*x - sqrt(b*c*x^2
+ a*c))^2 - a*c)*a))*c

________________________________________________________________________________________

maple [A]  time = 0.01, size = 37, normalized size = 0.77 \[ -\frac {\left (b \,x^{2}+a \right ) \left (2 b \,x^{2}+a \right ) \left (\frac {c}{b \,x^{2}+a}\right )^{\frac {3}{2}}}{a^{2} x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1/(b*x^2+a)*c)^(3/2)/x^2,x)

[Out]

-(b*x^2+a)*(2*b*x^2+a)*(1/(b*x^2+a)*c)^(3/2)/a^2/x

________________________________________________________________________________________

maxima [A]  time = 0.96, size = 46, normalized size = 0.96 \[ -\frac {2 \, b^{2} c^{\frac {3}{2}} x^{4} + 3 \, a b c^{\frac {3}{2}} x^{2} + a^{2} c^{\frac {3}{2}}}{{\left (b x^{2} + a\right )}^{\frac {3}{2}} a^{2} x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c/(b*x^2+a))^(3/2)/x^2,x, algorithm="maxima")

[Out]

-(2*b^2*c^(3/2)*x^4 + 3*a*b*c^(3/2)*x^2 + a^2*c^(3/2))/((b*x^2 + a)^(3/2)*a^2*x)

________________________________________________________________________________________

mupad [B]  time = 2.83, size = 54, normalized size = 1.12 \[ -\frac {\left (\frac {b\,c}{a}+\frac {2\,b^2\,c\,x^2}{a^2}\right )\,\sqrt {\frac {c}{b\,x^2+a}}\,\left (\frac {a}{b}+x^2\right )}{b\,x^3+a\,x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c/(a + b*x^2))^(3/2)/x^2,x)

[Out]

-(((b*c)/a + (2*b^2*c*x^2)/a^2)*(c/(a + b*x^2))^(1/2)*(a/b + x^2))/(a*x + b*x^3)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (\frac {c}{a + b x^{2}}\right )^{\frac {3}{2}}}{x^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c/(b*x**2+a))**(3/2)/x**2,x)

[Out]

Integral((c/(a + b*x**2))**(3/2)/x**2, x)

________________________________________________________________________________________