3.221 \(\int \frac {d+e x}{(a+c x^4)^{3/2}} \, dx\)

Optimal. Leaf size=114 \[ \frac {d \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{4 a^{5/4} \sqrt [4]{c} \sqrt {a+c x^4}}+\frac {x (d+e x)}{2 a \sqrt {a+c x^4}} \]

[Out]

1/2*x*(e*x+d)/a/(c*x^4+a)^(1/2)+1/4*d*(cos(2*arctan(c^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(c^(1/4)*x/a^(1/4
)))*EllipticF(sin(2*arctan(c^(1/4)*x/a^(1/4))),1/2*2^(1/2))*(a^(1/2)+x^2*c^(1/2))*((c*x^4+a)/(a^(1/2)+x^2*c^(1
/2))^2)^(1/2)/a^(5/4)/c^(1/4)/(c*x^4+a)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 114, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.176, Rules used = {1855, 12, 220} \[ \frac {d \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{4 a^{5/4} \sqrt [4]{c} \sqrt {a+c x^4}}+\frac {x (d+e x)}{2 a \sqrt {a+c x^4}} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x)/(a + c*x^4)^(3/2),x]

[Out]

(x*(d + e*x))/(2*a*Sqrt[a + c*x^4]) + (d*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*E
llipticF[2*ArcTan[(c^(1/4)*x)/a^(1/4)], 1/2])/(4*a^(5/4)*c^(1/4)*Sqrt[a + c*x^4])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 1855

Int[(Pq_)*((a_) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> -Simp[(x*Pq*(a + b*x^n)^(p + 1))/(a*n*(p + 1)), x] + Di
st[1/(a*n*(p + 1)), Int[ExpandToSum[n*(p + 1)*Pq + D[x*Pq, x], x]*(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b},
 x] && PolyQ[Pq, x] && IGtQ[n, 0] && LtQ[p, -1] && LtQ[Expon[Pq, x], n - 1]

Rubi steps

\begin {align*} \int \frac {d+e x}{\left (a+c x^4\right )^{3/2}} \, dx &=\frac {x (d+e x)}{2 a \sqrt {a+c x^4}}+\frac {\int \frac {d}{\sqrt {a+c x^4}} \, dx}{2 a}\\ &=\frac {x (d+e x)}{2 a \sqrt {a+c x^4}}+\frac {d \int \frac {1}{\sqrt {a+c x^4}} \, dx}{2 a}\\ &=\frac {x (d+e x)}{2 a \sqrt {a+c x^4}}+\frac {d \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{4 a^{5/4} \sqrt [4]{c} \sqrt {a+c x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.03, size = 59, normalized size = 0.52 \[ \frac {x \left (d \sqrt {\frac {c x^4}{a}+1} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};-\frac {c x^4}{a}\right )+d+e x\right )}{2 a \sqrt {a+c x^4}} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)/(a + c*x^4)^(3/2),x]

[Out]

(x*(d + e*x + d*Sqrt[1 + (c*x^4)/a]*Hypergeometric2F1[1/4, 1/2, 5/4, -((c*x^4)/a)]))/(2*a*Sqrt[a + c*x^4])

________________________________________________________________________________________

fricas [F]  time = 0.69, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {c x^{4} + a} {\left (e x + d\right )}}{c^{2} x^{8} + 2 \, a c x^{4} + a^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(c*x^4+a)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^4 + a)*(e*x + d)/(c^2*x^8 + 2*a*c*x^4 + a^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {e x + d}{{\left (c x^{4} + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(c*x^4+a)^(3/2),x, algorithm="giac")

[Out]

integrate((e*x + d)/(c*x^4 + a)^(3/2), x)

________________________________________________________________________________________

maple [C]  time = 0.01, size = 115, normalized size = 1.01 \[ \frac {e \,x^{2}}{2 \sqrt {c \,x^{4}+a}\, a}+\left (\frac {x}{2 \sqrt {\left (x^{4}+\frac {a}{c}\right ) c}\, a}+\frac {\sqrt {-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}+1}\, \sqrt {\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}+1}\, \EllipticF \left (\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, x , i\right )}{2 \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}\, a}\right ) d \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)/(c*x^4+a)^(3/2),x)

[Out]

1/2*e/(c*x^4+a)^(1/2)/a*x^2+d*(1/2/((x^4+a/c)*c)^(1/2)/a*x+1/2/a/(I/a^(1/2)*c^(1/2))^(1/2)*(-I/a^(1/2)*c^(1/2)
*x^2+1)^(1/2)*(I/a^(1/2)*c^(1/2)*x^2+1)^(1/2)/(c*x^4+a)^(1/2)*EllipticF((I/a^(1/2)*c^(1/2))^(1/2)*x,I))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {e x + d}{{\left (c x^{4} + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(c*x^4+a)^(3/2),x, algorithm="maxima")

[Out]

integrate((e*x + d)/(c*x^4 + a)^(3/2), x)

________________________________________________________________________________________

mupad [B]  time = 2.88, size = 57, normalized size = 0.50 \[ \frac {e\,x^2}{2\,a\,\sqrt {c\,x^4+a}}+\frac {d\,x\,{\left (\frac {c\,x^4}{a}+1\right )}^{3/2}\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{4},\frac {3}{2};\ \frac {5}{4};\ -\frac {c\,x^4}{a}\right )}{{\left (c\,x^4+a\right )}^{3/2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x)/(a + c*x^4)^(3/2),x)

[Out]

(e*x^2)/(2*a*(a + c*x^4)^(1/2)) + (d*x*((c*x^4)/a + 1)^(3/2)*hypergeom([1/4, 3/2], 5/4, -(c*x^4)/a))/(a + c*x^
4)^(3/2)

________________________________________________________________________________________

sympy [C]  time = 8.09, size = 61, normalized size = 0.54 \[ \frac {d x \Gamma \left (\frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{4}, \frac {3}{2} \\ \frac {5}{4} \end {matrix}\middle | {\frac {c x^{4} e^{i \pi }}{a}} \right )}}{4 a^{\frac {3}{2}} \Gamma \left (\frac {5}{4}\right )} + \frac {e x^{2}}{2 a^{\frac {3}{2}} \sqrt {1 + \frac {c x^{4}}{a}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(c*x**4+a)**(3/2),x)

[Out]

d*x*gamma(1/4)*hyper((1/4, 3/2), (5/4,), c*x**4*exp_polar(I*pi)/a)/(4*a**(3/2)*gamma(5/4)) + e*x**2/(2*a**(3/2
)*sqrt(1 + c*x**4/a))

________________________________________________________________________________________