3.215 \(\int \frac {1}{\sqrt {a+c x^4}} \, dx\)

Optimal. Leaf size=88 \[ \frac {\left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{2 \sqrt [4]{a} \sqrt [4]{c} \sqrt {a+c x^4}} \]

[Out]

1/2*(cos(2*arctan(c^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(c^(1/4)*x/a^(1/4)))*EllipticF(sin(2*arctan(c^(1/4)
*x/a^(1/4))),1/2*2^(1/2))*(a^(1/2)+x^2*c^(1/2))*((c*x^4+a)/(a^(1/2)+x^2*c^(1/2))^2)^(1/2)/a^(1/4)/c^(1/4)/(c*x
^4+a)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 88, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {220} \[ \frac {\left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{2 \sqrt [4]{a} \sqrt [4]{c} \sqrt {a+c x^4}} \]

Antiderivative was successfully verified.

[In]

Int[1/Sqrt[a + c*x^4],x]

[Out]

((Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticF[2*ArcTan[(c^(1/4)*x)/a^(1/4)],
1/2])/(2*a^(1/4)*c^(1/4)*Sqrt[a + c*x^4])

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {a+c x^4}} \, dx &=\frac {\left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{2 \sqrt [4]{a} \sqrt [4]{c} \sqrt {a+c x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.03, size = 74, normalized size = 0.84 \[ -\frac {i \sqrt {\frac {c x^4}{a}+1} F\left (\left .i \sinh ^{-1}\left (\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}} x\right )\right |-1\right )}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}} \sqrt {a+c x^4}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/Sqrt[a + c*x^4],x]

[Out]

((-I)*Sqrt[1 + (c*x^4)/a]*EllipticF[I*ArcSinh[Sqrt[(I*Sqrt[c])/Sqrt[a]]*x], -1])/(Sqrt[(I*Sqrt[c])/Sqrt[a]]*Sq
rt[a + c*x^4])

________________________________________________________________________________________

fricas [F]  time = 0.96, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {1}{\sqrt {c x^{4} + a}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x^4+a)^(1/2),x, algorithm="fricas")

[Out]

integral(1/sqrt(c*x^4 + a), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {c x^{4} + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x^4+a)^(1/2),x, algorithm="giac")

[Out]

integrate(1/sqrt(c*x^4 + a), x)

________________________________________________________________________________________

maple [C]  time = 0.00, size = 70, normalized size = 0.80 \[ \frac {\sqrt {-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}+1}\, \sqrt {\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}+1}\, \EllipticF \left (\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, x , i\right )}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(c*x^4+a)^(1/2),x)

[Out]

1/(I/a^(1/2)*c^(1/2))^(1/2)*(-I/a^(1/2)*c^(1/2)*x^2+1)^(1/2)*(I/a^(1/2)*c^(1/2)*x^2+1)^(1/2)/(c*x^4+a)^(1/2)*E
llipticF((I/a^(1/2)*c^(1/2))^(1/2)*x,I)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {c x^{4} + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x^4+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/sqrt(c*x^4 + a), x)

________________________________________________________________________________________

mupad [B]  time = 2.63, size = 37, normalized size = 0.42 \[ \frac {x\,\sqrt {\frac {c\,x^4}{a}+1}\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{4},\frac {1}{2};\ \frac {5}{4};\ -\frac {c\,x^4}{a}\right )}{\sqrt {c\,x^4+a}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a + c*x^4)^(1/2),x)

[Out]

(x*((c*x^4)/a + 1)^(1/2)*hypergeom([1/4, 1/2], 5/4, -(c*x^4)/a))/(a + c*x^4)^(1/2)

________________________________________________________________________________________

sympy [C]  time = 0.73, size = 36, normalized size = 0.41 \[ \frac {x \Gamma \left (\frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{4}, \frac {1}{2} \\ \frac {5}{4} \end {matrix}\middle | {\frac {c x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt {a} \Gamma \left (\frac {5}{4}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x**4+a)**(1/2),x)

[Out]

x*gamma(1/4)*hyper((1/4, 1/2), (5/4,), c*x**4*exp_polar(I*pi)/a)/(4*sqrt(a)*gamma(5/4))

________________________________________________________________________________________