3.191 \(\int \frac {(e+f x)^n}{a+b x^3} \, dx\)

Optimal. Leaf size=263 \[ -\frac {(e+f x)^{n+1} \, _2F_1\left (1,n+1;n+2;\frac {\sqrt [3]{b} (e+f x)}{\sqrt [3]{b} e-\sqrt [3]{a} f}\right )}{3 a^{2/3} (n+1) \left (\sqrt [3]{b} e-\sqrt [3]{a} f\right )}-\frac {(e+f x)^{n+1} \, _2F_1\left (1,n+1;n+2;\frac {(-1)^{2/3} \sqrt [3]{b} (e+f x)}{(-1)^{2/3} \sqrt [3]{b} e-\sqrt [3]{a} f}\right )}{3 a^{2/3} (n+1) \left ((-1)^{2/3} \sqrt [3]{b} e-\sqrt [3]{a} f\right )}+\frac {(e+f x)^{n+1} \, _2F_1\left (1,n+1;n+2;\frac {\sqrt [3]{-1} \sqrt [3]{b} (e+f x)}{\sqrt [3]{-1} \sqrt [3]{b} e+\sqrt [3]{a} f}\right )}{3 a^{2/3} (n+1) \left (\sqrt [3]{a} f+\sqrt [3]{-1} \sqrt [3]{b} e\right )} \]

[Out]

-1/3*(f*x+e)^(1+n)*hypergeom([1, 1+n],[2+n],b^(1/3)*(f*x+e)/(b^(1/3)*e-a^(1/3)*f))/a^(2/3)/(b^(1/3)*e-a^(1/3)*
f)/(1+n)-1/3*(f*x+e)^(1+n)*hypergeom([1, 1+n],[2+n],(-1)^(2/3)*b^(1/3)*(f*x+e)/((-1)^(2/3)*b^(1/3)*e-a^(1/3)*f
))/a^(2/3)/((-1)^(2/3)*b^(1/3)*e-a^(1/3)*f)/(1+n)+1/3*(f*x+e)^(1+n)*hypergeom([1, 1+n],[2+n],(-1)^(1/3)*b^(1/3
)*(f*x+e)/((-1)^(1/3)*b^(1/3)*e+a^(1/3)*f))/a^(2/3)/((-1)^(1/3)*b^(1/3)*e+a^(1/3)*f)/(1+n)

________________________________________________________________________________________

Rubi [A]  time = 0.16, antiderivative size = 263, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 2, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {6725, 68} \[ -\frac {(e+f x)^{n+1} \, _2F_1\left (1,n+1;n+2;\frac {\sqrt [3]{b} (e+f x)}{\sqrt [3]{b} e-\sqrt [3]{a} f}\right )}{3 a^{2/3} (n+1) \left (\sqrt [3]{b} e-\sqrt [3]{a} f\right )}-\frac {(e+f x)^{n+1} \, _2F_1\left (1,n+1;n+2;\frac {(-1)^{2/3} \sqrt [3]{b} (e+f x)}{(-1)^{2/3} \sqrt [3]{b} e-\sqrt [3]{a} f}\right )}{3 a^{2/3} (n+1) \left ((-1)^{2/3} \sqrt [3]{b} e-\sqrt [3]{a} f\right )}+\frac {(e+f x)^{n+1} \, _2F_1\left (1,n+1;n+2;\frac {\sqrt [3]{-1} \sqrt [3]{b} (e+f x)}{\sqrt [3]{-1} \sqrt [3]{b} e+\sqrt [3]{a} f}\right )}{3 a^{2/3} (n+1) \left (\sqrt [3]{a} f+\sqrt [3]{-1} \sqrt [3]{b} e\right )} \]

Antiderivative was successfully verified.

[In]

Int[(e + f*x)^n/(a + b*x^3),x]

[Out]

-((e + f*x)^(1 + n)*Hypergeometric2F1[1, 1 + n, 2 + n, (b^(1/3)*(e + f*x))/(b^(1/3)*e - a^(1/3)*f)])/(3*a^(2/3
)*(b^(1/3)*e - a^(1/3)*f)*(1 + n)) - ((e + f*x)^(1 + n)*Hypergeometric2F1[1, 1 + n, 2 + n, ((-1)^(2/3)*b^(1/3)
*(e + f*x))/((-1)^(2/3)*b^(1/3)*e - a^(1/3)*f)])/(3*a^(2/3)*((-1)^(2/3)*b^(1/3)*e - a^(1/3)*f)*(1 + n)) + ((e
+ f*x)^(1 + n)*Hypergeometric2F1[1, 1 + n, 2 + n, ((-1)^(1/3)*b^(1/3)*(e + f*x))/((-1)^(1/3)*b^(1/3)*e + a^(1/
3)*f)])/(3*a^(2/3)*((-1)^(1/3)*b^(1/3)*e + a^(1/3)*f)*(1 + n))

Rule 68

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((b*c - a*d)^n*(a + b*x)^(m + 1)*Hype
rgeometric2F1[-n, m + 1, m + 2, -((d*(a + b*x))/(b*c - a*d))])/(b^(n + 1)*(m + 1)), x] /; FreeQ[{a, b, c, d, m
}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] && IntegerQ[n]

Rule 6725

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {(e+f x)^n}{a+b x^3} \, dx &=\int \left (-\frac {(e+f x)^n}{3 a^{2/3} \left (-\sqrt [3]{a}-\sqrt [3]{b} x\right )}-\frac {(e+f x)^n}{3 a^{2/3} \left (-\sqrt [3]{a}+\sqrt [3]{-1} \sqrt [3]{b} x\right )}-\frac {(e+f x)^n}{3 a^{2/3} \left (-\sqrt [3]{a}-(-1)^{2/3} \sqrt [3]{b} x\right )}\right ) \, dx\\ &=-\frac {\int \frac {(e+f x)^n}{-\sqrt [3]{a}-\sqrt [3]{b} x} \, dx}{3 a^{2/3}}-\frac {\int \frac {(e+f x)^n}{-\sqrt [3]{a}+\sqrt [3]{-1} \sqrt [3]{b} x} \, dx}{3 a^{2/3}}-\frac {\int \frac {(e+f x)^n}{-\sqrt [3]{a}-(-1)^{2/3} \sqrt [3]{b} x} \, dx}{3 a^{2/3}}\\ &=-\frac {(e+f x)^{1+n} \, _2F_1\left (1,1+n;2+n;\frac {\sqrt [3]{b} (e+f x)}{\sqrt [3]{b} e-\sqrt [3]{a} f}\right )}{3 a^{2/3} \left (\sqrt [3]{b} e-\sqrt [3]{a} f\right ) (1+n)}-\frac {(e+f x)^{1+n} \, _2F_1\left (1,1+n;2+n;\frac {(-1)^{2/3} \sqrt [3]{b} (e+f x)}{(-1)^{2/3} \sqrt [3]{b} e-\sqrt [3]{a} f}\right )}{3 a^{2/3} \left ((-1)^{2/3} \sqrt [3]{b} e-\sqrt [3]{a} f\right ) (1+n)}+\frac {(e+f x)^{1+n} \, _2F_1\left (1,1+n;2+n;\frac {\sqrt [3]{-1} \sqrt [3]{b} (e+f x)}{\sqrt [3]{-1} \sqrt [3]{b} e+\sqrt [3]{a} f}\right )}{3 a^{2/3} \left (\sqrt [3]{-1} \sqrt [3]{b} e+\sqrt [3]{a} f\right ) (1+n)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.12, size = 222, normalized size = 0.84 \[ \frac {(e+f x)^{n+1} \left (-\frac {\, _2F_1\left (1,n+1;n+2;\frac {\sqrt [3]{b} (e+f x)}{\sqrt [3]{b} e-\sqrt [3]{a} f}\right )}{\sqrt [3]{b} e-\sqrt [3]{a} f}-\frac {\, _2F_1\left (1,n+1;n+2;\frac {(-1)^{2/3} \sqrt [3]{b} (e+f x)}{(-1)^{2/3} \sqrt [3]{b} e-\sqrt [3]{a} f}\right )}{(-1)^{2/3} \sqrt [3]{b} e-\sqrt [3]{a} f}+\frac {\, _2F_1\left (1,n+1;n+2;\frac {\sqrt [3]{-1} \sqrt [3]{b} (e+f x)}{\sqrt [3]{-1} \sqrt [3]{b} e+\sqrt [3]{a} f}\right )}{\sqrt [3]{a} f+\sqrt [3]{-1} \sqrt [3]{b} e}\right )}{3 a^{2/3} (n+1)} \]

Antiderivative was successfully verified.

[In]

Integrate[(e + f*x)^n/(a + b*x^3),x]

[Out]

((e + f*x)^(1 + n)*(-(Hypergeometric2F1[1, 1 + n, 2 + n, (b^(1/3)*(e + f*x))/(b^(1/3)*e - a^(1/3)*f)]/(b^(1/3)
*e - a^(1/3)*f)) - Hypergeometric2F1[1, 1 + n, 2 + n, ((-1)^(2/3)*b^(1/3)*(e + f*x))/((-1)^(2/3)*b^(1/3)*e - a
^(1/3)*f)]/((-1)^(2/3)*b^(1/3)*e - a^(1/3)*f) + Hypergeometric2F1[1, 1 + n, 2 + n, ((-1)^(1/3)*b^(1/3)*(e + f*
x))/((-1)^(1/3)*b^(1/3)*e + a^(1/3)*f)]/((-1)^(1/3)*b^(1/3)*e + a^(1/3)*f)))/(3*a^(2/3)*(1 + n))

________________________________________________________________________________________

fricas [F]  time = 0.45, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (f x + e\right )}^{n}}{b x^{3} + a}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)^n/(b*x^3+a),x, algorithm="fricas")

[Out]

integral((f*x + e)^n/(b*x^3 + a), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (f x + e\right )}^{n}}{b x^{3} + a}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)^n/(b*x^3+a),x, algorithm="giac")

[Out]

integrate((f*x + e)^n/(b*x^3 + a), x)

________________________________________________________________________________________

maple [F]  time = 0.06, size = 0, normalized size = 0.00 \[ \int \frac {\left (f x +e \right )^{n}}{b \,x^{3}+a}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((f*x+e)^n/(b*x^3+a),x)

[Out]

int((f*x+e)^n/(b*x^3+a),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (f x + e\right )}^{n}}{b x^{3} + a}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)^n/(b*x^3+a),x, algorithm="maxima")

[Out]

integrate((f*x + e)^n/(b*x^3 + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\left (e+f\,x\right )}^n}{b\,x^3+a} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e + f*x)^n/(a + b*x^3),x)

[Out]

int((e + f*x)^n/(a + b*x^3), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)**n/(b*x**3+a),x)

[Out]

Timed out

________________________________________________________________________________________