3.187 \(\int \frac {x^4 (e+f x)^n}{a+b x^3} \, dx\)

Optimal. Leaf size=332 \[ -\frac {a^{2/3} (e+f x)^{n+1} \, _2F_1\left (1,n+1;n+2;\frac {\sqrt [3]{b} (e+f x)}{\sqrt [3]{b} e-\sqrt [3]{a} f}\right )}{3 b^{4/3} (n+1) \left (\sqrt [3]{b} e-\sqrt [3]{a} f\right )}+\frac {\sqrt [3]{-1} a^{2/3} (e+f x)^{n+1} \, _2F_1\left (1,n+1;n+2;\frac {(-1)^{2/3} \sqrt [3]{b} (e+f x)}{(-1)^{2/3} \sqrt [3]{b} e-\sqrt [3]{a} f}\right )}{3 b^{4/3} (n+1) \left ((-1)^{2/3} \sqrt [3]{b} e-\sqrt [3]{a} f\right )}+\frac {(-1)^{2/3} a^{2/3} (e+f x)^{n+1} \, _2F_1\left (1,n+1;n+2;\frac {\sqrt [3]{-1} \sqrt [3]{b} (e+f x)}{\sqrt [3]{-1} \sqrt [3]{b} e+\sqrt [3]{a} f}\right )}{3 b^{4/3} (n+1) \left (\sqrt [3]{a} f+\sqrt [3]{-1} \sqrt [3]{b} e\right )}-\frac {e (e+f x)^{n+1}}{b f^2 (n+1)}+\frac {(e+f x)^{n+2}}{b f^2 (n+2)} \]

[Out]

-e*(f*x+e)^(1+n)/b/f^2/(1+n)+(f*x+e)^(2+n)/b/f^2/(2+n)-1/3*a^(2/3)*(f*x+e)^(1+n)*hypergeom([1, 1+n],[2+n],b^(1
/3)*(f*x+e)/(b^(1/3)*e-a^(1/3)*f))/b^(4/3)/(b^(1/3)*e-a^(1/3)*f)/(1+n)+1/3*(-1)^(1/3)*a^(2/3)*(f*x+e)^(1+n)*hy
pergeom([1, 1+n],[2+n],(-1)^(2/3)*b^(1/3)*(f*x+e)/((-1)^(2/3)*b^(1/3)*e-a^(1/3)*f))/b^(4/3)/((-1)^(2/3)*b^(1/3
)*e-a^(1/3)*f)/(1+n)+1/3*(-1)^(2/3)*a^(2/3)*(f*x+e)^(1+n)*hypergeom([1, 1+n],[2+n],(-1)^(1/3)*b^(1/3)*(f*x+e)/
((-1)^(1/3)*b^(1/3)*e+a^(1/3)*f))/b^(4/3)/((-1)^(1/3)*b^(1/3)*e+a^(1/3)*f)/(1+n)

________________________________________________________________________________________

Rubi [A]  time = 0.86, antiderivative size = 332, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 2, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {6725, 68} \[ -\frac {a^{2/3} (e+f x)^{n+1} \, _2F_1\left (1,n+1;n+2;\frac {\sqrt [3]{b} (e+f x)}{\sqrt [3]{b} e-\sqrt [3]{a} f}\right )}{3 b^{4/3} (n+1) \left (\sqrt [3]{b} e-\sqrt [3]{a} f\right )}+\frac {\sqrt [3]{-1} a^{2/3} (e+f x)^{n+1} \, _2F_1\left (1,n+1;n+2;\frac {(-1)^{2/3} \sqrt [3]{b} (e+f x)}{(-1)^{2/3} \sqrt [3]{b} e-\sqrt [3]{a} f}\right )}{3 b^{4/3} (n+1) \left ((-1)^{2/3} \sqrt [3]{b} e-\sqrt [3]{a} f\right )}+\frac {(-1)^{2/3} a^{2/3} (e+f x)^{n+1} \, _2F_1\left (1,n+1;n+2;\frac {\sqrt [3]{-1} \sqrt [3]{b} (e+f x)}{\sqrt [3]{-1} \sqrt [3]{b} e+\sqrt [3]{a} f}\right )}{3 b^{4/3} (n+1) \left (\sqrt [3]{a} f+\sqrt [3]{-1} \sqrt [3]{b} e\right )}-\frac {e (e+f x)^{n+1}}{b f^2 (n+1)}+\frac {(e+f x)^{n+2}}{b f^2 (n+2)} \]

Antiderivative was successfully verified.

[In]

Int[(x^4*(e + f*x)^n)/(a + b*x^3),x]

[Out]

-((e*(e + f*x)^(1 + n))/(b*f^2*(1 + n))) + (e + f*x)^(2 + n)/(b*f^2*(2 + n)) - (a^(2/3)*(e + f*x)^(1 + n)*Hype
rgeometric2F1[1, 1 + n, 2 + n, (b^(1/3)*(e + f*x))/(b^(1/3)*e - a^(1/3)*f)])/(3*b^(4/3)*(b^(1/3)*e - a^(1/3)*f
)*(1 + n)) + ((-1)^(1/3)*a^(2/3)*(e + f*x)^(1 + n)*Hypergeometric2F1[1, 1 + n, 2 + n, ((-1)^(2/3)*b^(1/3)*(e +
 f*x))/((-1)^(2/3)*b^(1/3)*e - a^(1/3)*f)])/(3*b^(4/3)*((-1)^(2/3)*b^(1/3)*e - a^(1/3)*f)*(1 + n)) + ((-1)^(2/
3)*a^(2/3)*(e + f*x)^(1 + n)*Hypergeometric2F1[1, 1 + n, 2 + n, ((-1)^(1/3)*b^(1/3)*(e + f*x))/((-1)^(1/3)*b^(
1/3)*e + a^(1/3)*f)])/(3*b^(4/3)*((-1)^(1/3)*b^(1/3)*e + a^(1/3)*f)*(1 + n))

Rule 68

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((b*c - a*d)^n*(a + b*x)^(m + 1)*Hype
rgeometric2F1[-n, m + 1, m + 2, -((d*(a + b*x))/(b*c - a*d))])/(b^(n + 1)*(m + 1)), x] /; FreeQ[{a, b, c, d, m
}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] && IntegerQ[n]

Rule 6725

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {x^4 (e+f x)^n}{a+b x^3} \, dx &=\int \left (-\frac {e (e+f x)^n}{b f}+\frac {(e+f x)^{1+n}}{b f}-\frac {a x (e+f x)^n}{b \left (a+b x^3\right )}\right ) \, dx\\ &=-\frac {e (e+f x)^{1+n}}{b f^2 (1+n)}+\frac {(e+f x)^{2+n}}{b f^2 (2+n)}-\frac {a \int \frac {x (e+f x)^n}{a+b x^3} \, dx}{b}\\ &=-\frac {e (e+f x)^{1+n}}{b f^2 (1+n)}+\frac {(e+f x)^{2+n}}{b f^2 (2+n)}-\frac {a \int \left (-\frac {(e+f x)^n}{3 \sqrt [3]{a} \sqrt [3]{b} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}-\frac {(-1)^{2/3} (e+f x)^n}{3 \sqrt [3]{a} \sqrt [3]{b} \left (\sqrt [3]{a}-\sqrt [3]{-1} \sqrt [3]{b} x\right )}+\frac {\sqrt [3]{-1} (e+f x)^n}{3 \sqrt [3]{a} \sqrt [3]{b} \left (\sqrt [3]{a}+(-1)^{2/3} \sqrt [3]{b} x\right )}\right ) \, dx}{b}\\ &=-\frac {e (e+f x)^{1+n}}{b f^2 (1+n)}+\frac {(e+f x)^{2+n}}{b f^2 (2+n)}+\frac {a^{2/3} \int \frac {(e+f x)^n}{\sqrt [3]{a}+\sqrt [3]{b} x} \, dx}{3 b^{4/3}}-\frac {\left (\sqrt [3]{-1} a^{2/3}\right ) \int \frac {(e+f x)^n}{\sqrt [3]{a}+(-1)^{2/3} \sqrt [3]{b} x} \, dx}{3 b^{4/3}}+\frac {\left ((-1)^{2/3} a^{2/3}\right ) \int \frac {(e+f x)^n}{\sqrt [3]{a}-\sqrt [3]{-1} \sqrt [3]{b} x} \, dx}{3 b^{4/3}}\\ &=-\frac {e (e+f x)^{1+n}}{b f^2 (1+n)}+\frac {(e+f x)^{2+n}}{b f^2 (2+n)}-\frac {a^{2/3} (e+f x)^{1+n} \, _2F_1\left (1,1+n;2+n;\frac {\sqrt [3]{b} (e+f x)}{\sqrt [3]{b} e-\sqrt [3]{a} f}\right )}{3 b^{4/3} \left (\sqrt [3]{b} e-\sqrt [3]{a} f\right ) (1+n)}+\frac {\sqrt [3]{-1} a^{2/3} (e+f x)^{1+n} \, _2F_1\left (1,1+n;2+n;\frac {(-1)^{2/3} \sqrt [3]{b} (e+f x)}{(-1)^{2/3} \sqrt [3]{b} e-\sqrt [3]{a} f}\right )}{3 b^{4/3} \left ((-1)^{2/3} \sqrt [3]{b} e-\sqrt [3]{a} f\right ) (1+n)}+\frac {(-1)^{2/3} a^{2/3} (e+f x)^{1+n} \, _2F_1\left (1,1+n;2+n;\frac {\sqrt [3]{-1} \sqrt [3]{b} (e+f x)}{\sqrt [3]{-1} \sqrt [3]{b} e+\sqrt [3]{a} f}\right )}{3 b^{4/3} \left (\sqrt [3]{-1} \sqrt [3]{b} e+\sqrt [3]{a} f\right ) (1+n)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.68, size = 292, normalized size = 0.88 \[ \frac {(e+f x)^{n+1} \left (-\frac {a^{2/3} \, _2F_1\left (1,n+1;n+2;\frac {\sqrt [3]{b} (e+f x)}{\sqrt [3]{b} e-\sqrt [3]{a} f}\right )}{(n+1) \left (\sqrt [3]{b} e-\sqrt [3]{a} f\right )}+\frac {\sqrt [3]{-1} a^{2/3} \, _2F_1\left (1,n+1;n+2;\frac {(-1)^{2/3} \sqrt [3]{b} (e+f x)}{(-1)^{2/3} \sqrt [3]{b} e-\sqrt [3]{a} f}\right )}{(n+1) \left ((-1)^{2/3} \sqrt [3]{b} e-\sqrt [3]{a} f\right )}+\frac {(-1)^{2/3} a^{2/3} \, _2F_1\left (1,n+1;n+2;\frac {\sqrt [3]{-1} \sqrt [3]{b} (e+f x)}{\sqrt [3]{-1} \sqrt [3]{b} e+\sqrt [3]{a} f}\right )}{(n+1) \left (\sqrt [3]{a} f+\sqrt [3]{-1} \sqrt [3]{b} e\right )}+\frac {3 \sqrt [3]{b} (e+f x)}{f^2 (n+2)}-\frac {3 \sqrt [3]{b} e}{f^2 (n+1)}\right )}{3 b^{4/3}} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^4*(e + f*x)^n)/(a + b*x^3),x]

[Out]

((e + f*x)^(1 + n)*((-3*b^(1/3)*e)/(f^2*(1 + n)) + (3*b^(1/3)*(e + f*x))/(f^2*(2 + n)) - (a^(2/3)*Hypergeometr
ic2F1[1, 1 + n, 2 + n, (b^(1/3)*(e + f*x))/(b^(1/3)*e - a^(1/3)*f)])/((b^(1/3)*e - a^(1/3)*f)*(1 + n)) + ((-1)
^(1/3)*a^(2/3)*Hypergeometric2F1[1, 1 + n, 2 + n, ((-1)^(2/3)*b^(1/3)*(e + f*x))/((-1)^(2/3)*b^(1/3)*e - a^(1/
3)*f)])/(((-1)^(2/3)*b^(1/3)*e - a^(1/3)*f)*(1 + n)) + ((-1)^(2/3)*a^(2/3)*Hypergeometric2F1[1, 1 + n, 2 + n,
((-1)^(1/3)*b^(1/3)*(e + f*x))/((-1)^(1/3)*b^(1/3)*e + a^(1/3)*f)])/(((-1)^(1/3)*b^(1/3)*e + a^(1/3)*f)*(1 + n
))))/(3*b^(4/3))

________________________________________________________________________________________

fricas [F]  time = 0.45, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (f x + e\right )}^{n} x^{4}}{b x^{3} + a}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(f*x+e)^n/(b*x^3+a),x, algorithm="fricas")

[Out]

integral((f*x + e)^n*x^4/(b*x^3 + a), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (f x + e\right )}^{n} x^{4}}{b x^{3} + a}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(f*x+e)^n/(b*x^3+a),x, algorithm="giac")

[Out]

integrate((f*x + e)^n*x^4/(b*x^3 + a), x)

________________________________________________________________________________________

maple [F]  time = 0.06, size = 0, normalized size = 0.00 \[ \int \frac {x^{4} \left (f x +e \right )^{n}}{b \,x^{3}+a}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4*(f*x+e)^n/(b*x^3+a),x)

[Out]

int(x^4*(f*x+e)^n/(b*x^3+a),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (f x + e\right )}^{n} x^{4}}{b x^{3} + a}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(f*x+e)^n/(b*x^3+a),x, algorithm="maxima")

[Out]

integrate((f*x + e)^n*x^4/(b*x^3 + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {x^4\,{\left (e+f\,x\right )}^n}{b\,x^3+a} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^4*(e + f*x)^n)/(a + b*x^3),x)

[Out]

int((x^4*(e + f*x)^n)/(a + b*x^3), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**4*(f*x+e)**n/(b*x**3+a),x)

[Out]

Timed out

________________________________________________________________________________________