3.168 \(\int \frac {e+f x}{x \sqrt {1+x^3}} \, dx\)

Optimal. Leaf size=120 \[ \frac {2 \sqrt {2+\sqrt {3}} f (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} F\left (\sin ^{-1}\left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}-\frac {2}{3} e \tanh ^{-1}\left (\sqrt {x^3+1}\right ) \]

[Out]

-2/3*e*arctanh((x^3+1)^(1/2))+2/3*f*(1+x)*EllipticF((1+x-3^(1/2))/(1+x+3^(1/2)),I*3^(1/2)+2*I)*(1/2*6^(1/2)+1/
2*2^(1/2))*((x^2-x+1)/(1+x+3^(1/2))^2)^(1/2)*3^(3/4)/(x^3+1)^(1/2)/((1+x)/(1+x+3^(1/2))^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 120, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {1832, 266, 63, 207, 12, 218} \[ \frac {2 \sqrt {2+\sqrt {3}} f (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} F\left (\sin ^{-1}\left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}-\frac {2}{3} e \tanh ^{-1}\left (\sqrt {x^3+1}\right ) \]

Antiderivative was successfully verified.

[In]

Int[(e + f*x)/(x*Sqrt[1 + x^3]),x]

[Out]

(-2*e*ArcTanh[Sqrt[1 + x^3]])/3 + (2*Sqrt[2 + Sqrt[3]]*f*(1 + x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*Ellip
ticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(3^(1/4)*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*
Sqrt[1 + x^3])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 218

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 + Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3
])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(s*(s + r*x))/((1 + Sqr
t[3])*s + r*x)^2]), x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 1832

Int[(Pq_)/((x_)*Sqrt[(a_) + (b_.)*(x_)^(n_)]), x_Symbol] :> Dist[Coeff[Pq, x, 0], Int[1/(x*Sqrt[a + b*x^n]), x
], x] + Int[ExpandToSum[(Pq - Coeff[Pq, x, 0])/x, x]/Sqrt[a + b*x^n], x] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] &
& IGtQ[n, 0] && NeQ[Coeff[Pq, x, 0], 0]

Rubi steps

\begin {align*} \int \frac {e+f x}{x \sqrt {1+x^3}} \, dx &=e \int \frac {1}{x \sqrt {1+x^3}} \, dx+\int \frac {f}{\sqrt {1+x^3}} \, dx\\ &=\frac {1}{3} e \operatorname {Subst}\left (\int \frac {1}{x \sqrt {1+x}} \, dx,x,x^3\right )+f \int \frac {1}{\sqrt {1+x^3}} \, dx\\ &=\frac {2 \sqrt {2+\sqrt {3}} f (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}+\frac {1}{3} (2 e) \operatorname {Subst}\left (\int \frac {1}{-1+x^2} \, dx,x,\sqrt {1+x^3}\right )\\ &=-\frac {2}{3} e \tanh ^{-1}\left (\sqrt {1+x^3}\right )+\frac {2 \sqrt {2+\sqrt {3}} f (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.02, size = 34, normalized size = 0.28 \[ f x \, _2F_1\left (\frac {1}{3},\frac {1}{2};\frac {4}{3};-x^3\right )-\frac {2}{3} e \tanh ^{-1}\left (\sqrt {x^3+1}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(e + f*x)/(x*Sqrt[1 + x^3]),x]

[Out]

(-2*e*ArcTanh[Sqrt[1 + x^3]])/3 + f*x*Hypergeometric2F1[1/3, 1/2, 4/3, -x^3]

________________________________________________________________________________________

fricas [F]  time = 0.86, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {x^{3} + 1} {\left (f x + e\right )}}{x^{4} + x}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)/x/(x^3+1)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(x^3 + 1)*(f*x + e)/(x^4 + x), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {f x + e}{\sqrt {x^{3} + 1} x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)/x/(x^3+1)^(1/2),x, algorithm="giac")

[Out]

integrate((f*x + e)/(sqrt(x^3 + 1)*x), x)

________________________________________________________________________________________

maple [A]  time = 0.01, size = 129, normalized size = 1.08 \[ -\frac {2 e \arctanh \left (\sqrt {x^{3}+1}\right )}{3}+\frac {2 \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, f \EllipticF \left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {x^{3}+1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((f*x+e)/x/(x^3+1)^(1/2),x)

[Out]

2*f*(3/2-1/2*I*3^(1/2))*((x+1)/(3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2-1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2)*(
(x-1/2+1/2*I*3^(1/2))/(-3/2+1/2*I*3^(1/2)))^(1/2)/(x^3+1)^(1/2)*EllipticF(((x+1)/(3/2-1/2*I*3^(1/2)))^(1/2),((
-3/2+1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2))-2/3*e*arctanh((x^3+1)^(1/2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {f x + e}{\sqrt {x^{3} + 1} x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)/x/(x^3+1)^(1/2),x, algorithm="maxima")

[Out]

integrate((f*x + e)/(sqrt(x^3 + 1)*x), x)

________________________________________________________________________________________

mupad [B]  time = 2.64, size = 207, normalized size = 1.72 \[ \frac {\left (3+\sqrt {3}\,1{}\mathrm {i}\right )\,\sqrt {\frac {x-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\left (f\,\mathrm {F}\left (\mathrm {asin}\left (\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )-e\,\Pi \left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2};\mathrm {asin}\left (\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )\right )\,\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {\frac {1}{2}-x+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}}{\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e + f*x)/(x*(x^3 + 1)^(1/2)),x)

[Out]

((3^(1/2)*1i + 3)*((x + (3^(1/2)*1i)/2 - 1/2)/((3^(1/2)*1i)/2 - 3/2))^(1/2)*(f*ellipticF(asin(((x + 1)/((3^(1/
2)*1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2)) - e*ellipticPi((3^(1/2)*1i)/2 + 3/2,
asin(((x + 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2)))*((x + 1)/((3^(1
/2)*1i)/2 + 3/2))^(1/2)*(((3^(1/2)*1i)/2 - x + 1/2)/((3^(1/2)*1i)/2 + 3/2))^(1/2))/(x^3 - x*(((3^(1/2)*1i)/2 -
 1/2)*((3^(1/2)*1i)/2 + 1/2) + 1) - ((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2))^(1/2)

________________________________________________________________________________________

sympy [A]  time = 2.96, size = 42, normalized size = 0.35 \[ - \frac {2 e \operatorname {asinh}{\left (\frac {1}{x^{\frac {3}{2}}} \right )}}{3} + \frac {f x \Gamma \left (\frac {1}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{3}, \frac {1}{2} \\ \frac {4}{3} \end {matrix}\middle | {x^{3} e^{i \pi }} \right )}}{3 \Gamma \left (\frac {4}{3}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)/x/(x**3+1)**(1/2),x)

[Out]

-2*e*asinh(x**(-3/2))/3 + f*x*gamma(1/3)*hyper((1/3, 1/2), (4/3,), x**3*exp_polar(I*pi))/(3*gamma(4/3))

________________________________________________________________________________________