3.164 \(\int \frac {e+f x}{(c+d x) \sqrt {1+x^3}} \, dx\)

Optimal. Leaf size=450 \[ \frac {(x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} (d e-c f) \tan ^{-1}\left (\frac {\sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {c^2+c d+d^2}}{\sqrt {d} \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {c-d}}\right )}{\sqrt {d} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1} \sqrt {c-d} \sqrt {c^2+c d+d^2}}-\frac {4 \sqrt [4]{3} \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} (d e-c f) \Pi \left (\frac {\left (c-\left (1+\sqrt {3}\right ) d\right )^2}{\left (c-\left (1-\sqrt {3}\right ) d\right )^2};\sin ^{-1}\left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{\sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1} \left (c^2-2 c d-2 d^2\right )}+\frac {2 \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \left (e-\sqrt {3} f-f\right ) F\left (\sin ^{-1}\left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1} \left (c-\sqrt {3} d-d\right )} \]

[Out]

(-c*f+d*e)*(1+x)*arctan((c^2+c*d+d^2)^(1/2)*((1+x)/(1+x+3^(1/2))^2)^(1/2)/(c-d)^(1/2)/d^(1/2)/((x^2-x+1)/(1+x+
3^(1/2))^2)^(1/2))*((x^2-x+1)/(1+x+3^(1/2))^2)^(1/2)/(c-d)^(1/2)/d^(1/2)/(c^2+c*d+d^2)^(1/2)/(x^3+1)^(1/2)/((1
+x)/(1+x+3^(1/2))^2)^(1/2)+4*3^(1/4)*(-c*f+d*e)*(1+x)*EllipticPi((-1-x+3^(1/2))/(1+x+3^(1/2)),(c-d*(1+3^(1/2))
)^2/(c-d*(1-3^(1/2)))^2,I*3^(1/2)+2*I)*(1/2*6^(1/2)+1/2*2^(1/2))*((x^2-x+1)/(1+x+3^(1/2))^2)^(1/2)/(c^2-2*c*d-
2*d^2)/(x^3+1)^(1/2)/((1+x)/(1+x+3^(1/2))^2)^(1/2)+2/3*(1+x)*EllipticF((1+x-3^(1/2))/(1+x+3^(1/2)),I*3^(1/2)+2
*I)*(e-f-f*3^(1/2))*(1/2*6^(1/2)+1/2*2^(1/2))*((x^2-x+1)/(1+x+3^(1/2))^2)^(1/2)*3^(3/4)/(-d*3^(1/2)+c-d)/(x^3+
1)^(1/2)/((1+x)/(1+x+3^(1/2))^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 1.06, antiderivative size = 452, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.364, Rules used = {2144, 218, 2142, 2113, 537, 571, 93, 205} \[ \frac {(x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} (d e-c f) \tan ^{-1}\left (\frac {\sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {c^2+c d+d^2}}{\sqrt {d} \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {c-d}}\right )}{\sqrt {d} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1} \sqrt {c-d} \sqrt {c^2+c d+d^2}}+\frac {4 \sqrt [4]{3} \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} (d e-c f) \Pi \left (\frac {\left (c-\left (1+\sqrt {3}\right ) d\right )^2}{\left (c-\left (1-\sqrt {3}\right ) d\right )^2};-\sin ^{-1}\left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{\sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1} \left (c^2-2 c d-2 d^2\right )}+\frac {2 \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \left (e-\sqrt {3} f-f\right ) F\left (\sin ^{-1}\left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1} \left (c-\sqrt {3} d-d\right )} \]

Antiderivative was successfully verified.

[In]

Int[(e + f*x)/((c + d*x)*Sqrt[1 + x^3]),x]

[Out]

((d*e - c*f)*(1 + x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*ArcTan[(Sqrt[c^2 + c*d + d^2]*Sqrt[(1 + x)/(1 + S
qrt[3] + x)^2])/(Sqrt[c - d]*Sqrt[d]*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2])])/(Sqrt[c - d]*Sqrt[d]*Sqrt[c^2
+ c*d + d^2]*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 + x^3]) + (2*Sqrt[2 + Sqrt[3]]*(e - f - Sqrt[3]*f)*(1 +
x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[
3]])/(3^(1/4)*(c - d - Sqrt[3]*d)*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 + x^3]) + (4*3^(1/4)*Sqrt[2 + Sqrt[
3]]*(d*e - c*f)*(1 + x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticPi[(c - (1 + Sqrt[3])*d)^2/(c - (1 - S
qrt[3])*d)^2, -ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/((c^2 - 2*c*d - 2*d^2)*Sqrt[(1 +
x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 + x^3])

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 218

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 + Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3
])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(s*(s + r*x))/((1 + Sqr
t[3])*s + r*x)^2]), x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 537

Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[(1*Ellipt
icPi[(b*c)/(a*d), ArcSin[Rt[-(d/c), 2]*x], (c*f)/(d*e)])/(a*Sqrt[c]*Sqrt[e]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b,
 c, d, e, f}, x] &&  !GtQ[d/c, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !( !GtQ[f/e, 0] && SimplerSqrtQ[-(f/e), -(d/c)
])

Rule 571

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_))^(r_.), x
_Symbol] :> Dist[1/n, Subst[Int[(a + b*x)^p*(c + d*x)^q*(e + f*x)^r, x], x, x^n], x] /; FreeQ[{a, b, c, d, e,
f, m, n, p, q, r}, x] && EqQ[m - n + 1, 0]

Rule 2113

Int[1/(((a_) + (b_.)*(x_))*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Dist[a, Int[1/((
a^2 - b^2*x^2)*Sqrt[c + d*x^2]*Sqrt[e + f*x^2]), x], x] - Dist[b, Int[x/((a^2 - b^2*x^2)*Sqrt[c + d*x^2]*Sqrt[
e + f*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f}, x]

Rule 2142

Int[((e_) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> With[{q = Simplify[((1 +
 Sqrt[3])*f)/e]}, Dist[(4*3^(1/4)*Sqrt[2 - Sqrt[3]]*f*(1 + q*x)*Sqrt[(1 - q*x + q^2*x^2)/(1 + Sqrt[3] + q*x)^2
])/(q*Sqrt[a + b*x^3]*Sqrt[(1 + q*x)/(1 + Sqrt[3] + q*x)^2]), Subst[Int[1/(((1 - Sqrt[3])*d - c*q + ((1 + Sqrt
[3])*d - c*q)*x)*Sqrt[1 - x^2]*Sqrt[7 - 4*Sqrt[3] + x^2]), x], x, (-1 + Sqrt[3] - q*x)/(1 + Sqrt[3] + q*x)], x
]] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] && EqQ[b*e^3 - 2*(5 + 3*Sqrt[3])*a*f^3, 0] && NeQ[b*c^
3 - 2*(5 - 3*Sqrt[3])*a*d^3, 0]

Rule 2144

Int[((e_.) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> With[{q = Rt[b/a, 3]},
Dist[((1 + Sqrt[3])*f - e*q)/((1 + Sqrt[3])*d - c*q), Int[1/Sqrt[a + b*x^3], x], x] + Dist[(d*e - c*f)/((1 + S
qrt[3])*d - c*q), Int[(1 + Sqrt[3] + q*x)/((c + d*x)*Sqrt[a + b*x^3]), x], x]] /; FreeQ[{a, b, c, d, e, f}, x]
 && NeQ[d*e - c*f, 0] && NeQ[b^2*c^6 - 20*a*b*c^3*d^3 - 8*a^2*d^6, 0] && NeQ[b^2*e^6 - 20*a*b*e^3*f^3 - 8*a^2*
f^6, 0]

Rubi steps

\begin {align*} \int \frac {e+f x}{(c+d x) \sqrt {1+x^3}} \, dx &=\frac {\left (e-\left (1+\sqrt {3}\right ) f\right ) \int \frac {1}{\sqrt {1+x^3}} \, dx}{c-\left (1+\sqrt {3}\right ) d}-\frac {(d e-c f) \int \frac {1+\sqrt {3}+x}{(c+d x) \sqrt {1+x^3}} \, dx}{c-\left (1+\sqrt {3}\right ) d}\\ &=\frac {2 \sqrt {2+\sqrt {3}} \left (e-f-\sqrt {3} f\right ) (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \left (c-d-\sqrt {3} d\right ) \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}-\frac {\left (4 \sqrt [4]{3} \sqrt {2-\sqrt {3}} (d e-c f) (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}}\right ) \operatorname {Subst}\left (\int \frac {1}{\left (-c+\left (1-\sqrt {3}\right ) d+\left (-c+\left (1+\sqrt {3}\right ) d\right ) x\right ) \sqrt {1-x^2} \sqrt {7-4 \sqrt {3}+x^2}} \, dx,x,\frac {-1+\sqrt {3}-x}{1+\sqrt {3}+x}\right )}{\left (c-\left (1+\sqrt {3}\right ) d\right ) \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}\\ &=\frac {2 \sqrt {2+\sqrt {3}} \left (e-f-\sqrt {3} f\right ) (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \left (c-d-\sqrt {3} d\right ) \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}+\frac {\left (4 \sqrt [4]{3} \sqrt {2-\sqrt {3}} \left (-c+d+\sqrt {3} d\right ) (d e-c f) (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}}\right ) \operatorname {Subst}\left (\int \frac {x}{\sqrt {1-x^2} \sqrt {7-4 \sqrt {3}+x^2} \left (\left (-c+\left (1-\sqrt {3}\right ) d\right )^2-\left (-c+\left (1+\sqrt {3}\right ) d\right )^2 x^2\right )} \, dx,x,\frac {-1+\sqrt {3}-x}{1+\sqrt {3}+x}\right )}{\left (c-\left (1+\sqrt {3}\right ) d\right ) \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}-\frac {\left (4 \sqrt [4]{3} \sqrt {2-\sqrt {3}} \left (-c+\left (1-\sqrt {3}\right ) d\right ) (d e-c f) (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {7-4 \sqrt {3}+x^2} \left (\left (-c+\left (1-\sqrt {3}\right ) d\right )^2-\left (-c+\left (1+\sqrt {3}\right ) d\right )^2 x^2\right )} \, dx,x,\frac {-1+\sqrt {3}-x}{1+\sqrt {3}+x}\right )}{\left (c-\left (1+\sqrt {3}\right ) d\right ) \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}\\ &=\frac {2 \sqrt {2+\sqrt {3}} \left (e-f-\sqrt {3} f\right ) (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \left (c-d-\sqrt {3} d\right ) \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}+\frac {4 \sqrt [4]{3} \sqrt {2+\sqrt {3}} (d e-c f) (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} \Pi \left (\frac {\left (c-\left (1+\sqrt {3}\right ) d\right )^2}{\left (c-\left (1-\sqrt {3}\right ) d\right )^2};-\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{\left (c^2-2 c d-2 d^2\right ) \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}+\frac {\left (2 \sqrt [4]{3} \sqrt {2-\sqrt {3}} \left (-c+d+\sqrt {3} d\right ) (d e-c f) (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-x} \sqrt {7-4 \sqrt {3}+x} \left (\left (-c+\left (1-\sqrt {3}\right ) d\right )^2-\left (-c+\left (1+\sqrt {3}\right ) d\right )^2 x\right )} \, dx,x,\frac {\left (-1+\sqrt {3}-x\right )^2}{\left (1+\sqrt {3}+x\right )^2}\right )}{\left (c-\left (1+\sqrt {3}\right ) d\right ) \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}\\ &=\frac {2 \sqrt {2+\sqrt {3}} \left (e-f-\sqrt {3} f\right ) (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \left (c-d-\sqrt {3} d\right ) \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}+\frac {4 \sqrt [4]{3} \sqrt {2+\sqrt {3}} (d e-c f) (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} \Pi \left (\frac {\left (c-\left (1+\sqrt {3}\right ) d\right )^2}{\left (c-\left (1-\sqrt {3}\right ) d\right )^2};-\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{\left (c^2-2 c d-2 d^2\right ) \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}+\frac {\left (4 \sqrt [4]{3} \sqrt {2-\sqrt {3}} \left (-c+d+\sqrt {3} d\right ) (d e-c f) (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}}\right ) \operatorname {Subst}\left (\int \frac {1}{-\left (-c+\left (1-\sqrt {3}\right ) d\right )^2+\left (-c+\left (1+\sqrt {3}\right ) d\right )^2-\left (\left (-c+\left (1-\sqrt {3}\right ) d\right )^2+\left (7-4 \sqrt {3}\right ) \left (-c+\left (1+\sqrt {3}\right ) d\right )^2\right ) x^2} \, dx,x,\frac {\sqrt [4]{3} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}}}{\sqrt {-\frac {\left (-2+\sqrt {3}\right ) \left (1-x+x^2\right )}{\left (1+\sqrt {3}+x\right )^2}}}\right )}{\left (c-\left (1+\sqrt {3}\right ) d\right ) \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}\\ &=\frac {(d e-c f) (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} \tan ^{-1}\left (\frac {\sqrt {c^2+c d+d^2} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}}}{\sqrt {c-d} \sqrt {d} \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}}}\right )}{\sqrt {c-d} \sqrt {d} \sqrt {c^2+c d+d^2} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}+\frac {2 \sqrt {2+\sqrt {3}} \left (e-f-\sqrt {3} f\right ) (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \left (c-d-\sqrt {3} d\right ) \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}+\frac {4 \sqrt [4]{3} \sqrt {2+\sqrt {3}} (d e-c f) (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} \Pi \left (\frac {\left (c-\left (1+\sqrt {3}\right ) d\right )^2}{\left (c-\left (1-\sqrt {3}\right ) d\right )^2};-\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{\left (c^2-2 c d-2 d^2\right ) \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.56, size = 211, normalized size = 0.47 \[ \frac {2 \sqrt {\frac {x+1}{1+\sqrt [3]{-1}}} \left (-\frac {f \left (\sqrt [3]{-1}-x\right ) \sqrt {\frac {\sqrt [3]{-1}-(-1)^{2/3} x}{1+\sqrt [3]{-1}}} F\left (\sin ^{-1}\left (\sqrt {\frac {(-1)^{2/3} x+1}{1+\sqrt [3]{-1}}}\right )|\sqrt [3]{-1}\right )}{\sqrt {\frac {(-1)^{2/3} x+1}{1+\sqrt [3]{-1}}}}+\frac {i \sqrt {x^2-x+1} (c f-d e) \Pi \left (\frac {i \sqrt {3} d}{c+\sqrt [3]{-1} d};\sin ^{-1}\left (\sqrt {\frac {(-1)^{2/3} x+1}{1+\sqrt [3]{-1}}}\right )|\sqrt [3]{-1}\right )}{c+\sqrt [3]{-1} d}\right )}{d \sqrt {x^3+1}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(e + f*x)/((c + d*x)*Sqrt[1 + x^3]),x]

[Out]

(2*Sqrt[(1 + x)/(1 + (-1)^(1/3))]*(-((f*((-1)^(1/3) - x)*Sqrt[((-1)^(1/3) - (-1)^(2/3)*x)/(1 + (-1)^(1/3))]*El
lipticF[ArcSin[Sqrt[(1 + (-1)^(2/3)*x)/(1 + (-1)^(1/3))]], (-1)^(1/3)])/Sqrt[(1 + (-1)^(2/3)*x)/(1 + (-1)^(1/3
))]) + (I*(-(d*e) + c*f)*Sqrt[1 - x + x^2]*EllipticPi[(I*Sqrt[3]*d)/(c + (-1)^(1/3)*d), ArcSin[Sqrt[(1 + (-1)^
(2/3)*x)/(1 + (-1)^(1/3))]], (-1)^(1/3)])/(c + (-1)^(1/3)*d)))/(d*Sqrt[1 + x^3])

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)/(d*x+c)/(x^3+1)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {f x + e}{\sqrt {x^{3} + 1} {\left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)/(d*x+c)/(x^3+1)^(1/2),x, algorithm="giac")

[Out]

integrate((f*x + e)/(sqrt(x^3 + 1)*(d*x + c)), x)

________________________________________________________________________________________

maple [A]  time = 0.01, size = 274, normalized size = 0.61 \[ \frac {2 \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, f \EllipticF \left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {x^{3}+1}\, d}+\frac {2 \left (-c f +d e \right ) \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \EllipticPi \left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{\frac {c}{d}-1}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {x^{3}+1}\, \left (\frac {c}{d}-1\right ) d^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((f*x+e)/(d*x+c)/(x^3+1)^(1/2),x)

[Out]

2*f/d*(3/2-1/2*I*3^(1/2))*((x+1)/(3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2-1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2)
*((x-1/2+1/2*I*3^(1/2))/(-3/2+1/2*I*3^(1/2)))^(1/2)/(x^3+1)^(1/2)*EllipticF(((x+1)/(3/2-1/2*I*3^(1/2)))^(1/2),
((-3/2+1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2))+2*(-c*f+d*e)/d^2*(3/2-1/2*I*3^(1/2))*((x+1)/(3/2-1/2*I*3^(1
/2)))^(1/2)*((x-1/2-1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2+1/2*I*3^(1/2))/(-3/2+1/2*I*3^(1/2)))^(1
/2)/(x^3+1)^(1/2)/(c/d-1)*EllipticPi(((x+1)/(3/2-1/2*I*3^(1/2)))^(1/2),(-3/2+1/2*I*3^(1/2))/(c/d-1),((-3/2+1/2
*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {f x + e}{\sqrt {x^{3} + 1} {\left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)/(d*x+c)/(x^3+1)^(1/2),x, algorithm="maxima")

[Out]

integrate((f*x + e)/(sqrt(x^3 + 1)*(d*x + c)), x)

________________________________________________________________________________________

mupad [B]  time = 0.13, size = 356, normalized size = 0.79 \[ \frac {2\,f\,\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\sqrt {\frac {x-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {\frac {1}{2}-x+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\mathrm {F}\left (\mathrm {asin}\left (\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )}{d\,\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}}-\frac {2\,\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\sqrt {\frac {x-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\left (c\,f-d\,e\right )\,\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {\frac {1}{2}-x+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\Pi \left (-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {c}{d}-1};\mathrm {asin}\left (\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )}{d^2\,\left (\frac {c}{d}-1\right )\,\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e + f*x)/((x^3 + 1)^(1/2)*(c + d*x)),x)

[Out]

(2*f*((3^(1/2)*1i)/2 + 3/2)*((x + (3^(1/2)*1i)/2 - 1/2)/((3^(1/2)*1i)/2 - 3/2))^(1/2)*((x + 1)/((3^(1/2)*1i)/2
 + 3/2))^(1/2)*(((3^(1/2)*1i)/2 - x + 1/2)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*ellipticF(asin(((x + 1)/((3^(1/2)*1i)
/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2)))/(d*(x^3 - x*(((3^(1/2)*1i)/2 - 1/2)*((3^(1
/2)*1i)/2 + 1/2) + 1) - ((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2))^(1/2)) - (2*((3^(1/2)*1i)/2 + 3/2)*((x
+ (3^(1/2)*1i)/2 - 1/2)/((3^(1/2)*1i)/2 - 3/2))^(1/2)*(c*f - d*e)*((x + 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*(((3^
(1/2)*1i)/2 - x + 1/2)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*ellipticPi(-((3^(1/2)*1i)/2 + 3/2)/(c/d - 1), asin(((x +
1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2)))/(d^2*(c/d - 1)*(x^3 - x*((
(3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) + 1) - ((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2))^(1/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {e + f x}{\sqrt {\left (x + 1\right ) \left (x^{2} - x + 1\right )} \left (c + d x\right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)/(d*x+c)/(x**3+1)**(1/2),x)

[Out]

Integral((e + f*x)/(sqrt((x + 1)*(x**2 - x + 1))*(c + d*x)), x)

________________________________________________________________________________________