3.159 \(\int \frac {1-\sqrt {3}+x}{x \sqrt {-1-x^3}} \, dx\)

Optimal. Leaf size=138 \[ \frac {2}{3} \left (1-\sqrt {3}\right ) \tan ^{-1}\left (\sqrt {-x^3-1}\right )+\frac {2 \sqrt {2-\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x-\sqrt {3}+1\right )^2}} F\left (\sin ^{-1}\left (\frac {x+\sqrt {3}+1}{x-\sqrt {3}+1}\right )|-7+4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {-\frac {x+1}{\left (x-\sqrt {3}+1\right )^2}} \sqrt {-x^3-1}} \]

[Out]

2/3*arctan((-x^3-1)^(1/2))*(1-3^(1/2))+2/3*(1+x)*EllipticF((1+x+3^(1/2))/(1+x-3^(1/2)),2*I-I*3^(1/2))*(1/2*6^(
1/2)-1/2*2^(1/2))*((x^2-x+1)/(1+x-3^(1/2))^2)^(1/2)*3^(3/4)/(-x^3-1)^(1/2)/((-1-x)/(1+x-3^(1/2))^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 138, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {1832, 266, 63, 204, 219} \[ \frac {2}{3} \left (1-\sqrt {3}\right ) \tan ^{-1}\left (\sqrt {-x^3-1}\right )+\frac {2 \sqrt {2-\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x-\sqrt {3}+1\right )^2}} F\left (\sin ^{-1}\left (\frac {x+\sqrt {3}+1}{x-\sqrt {3}+1}\right )|-7+4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {-\frac {x+1}{\left (x-\sqrt {3}+1\right )^2}} \sqrt {-x^3-1}} \]

Antiderivative was successfully verified.

[In]

Int[(1 - Sqrt[3] + x)/(x*Sqrt[-1 - x^3]),x]

[Out]

(2*(1 - Sqrt[3])*ArcTan[Sqrt[-1 - x^3]])/3 + (2*Sqrt[2 - Sqrt[3]]*(1 + x)*Sqrt[(1 - x + x^2)/(1 - Sqrt[3] + x)
^2]*EllipticF[ArcSin[(1 + Sqrt[3] + x)/(1 - Sqrt[3] + x)], -7 + 4*Sqrt[3]])/(3^(1/4)*Sqrt[-((1 + x)/(1 - Sqrt[
3] + x)^2)]*Sqrt[-1 - x^3])

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 219

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 - Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 - Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 + Sqrt[3
])*s + r*x)/((1 - Sqrt[3])*s + r*x)], -7 + 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[-((s*(s + r*x))/((1 - S
qrt[3])*s + r*x)^2)]), x]] /; FreeQ[{a, b}, x] && NegQ[a]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 1832

Int[(Pq_)/((x_)*Sqrt[(a_) + (b_.)*(x_)^(n_)]), x_Symbol] :> Dist[Coeff[Pq, x, 0], Int[1/(x*Sqrt[a + b*x^n]), x
], x] + Int[ExpandToSum[(Pq - Coeff[Pq, x, 0])/x, x]/Sqrt[a + b*x^n], x] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] &
& IGtQ[n, 0] && NeQ[Coeff[Pq, x, 0], 0]

Rubi steps

\begin {align*} \int \frac {1-\sqrt {3}+x}{x \sqrt {-1-x^3}} \, dx &=\left (1-\sqrt {3}\right ) \int \frac {1}{x \sqrt {-1-x^3}} \, dx+\int \frac {1}{\sqrt {-1-x^3}} \, dx\\ &=\frac {2 \sqrt {2-\sqrt {3}} (1+x) \sqrt {\frac {1-x+x^2}{\left (1-\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1+\sqrt {3}+x}{1-\sqrt {3}+x}\right )|-7+4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {-\frac {1+x}{\left (1-\sqrt {3}+x\right )^2}} \sqrt {-1-x^3}}+\frac {1}{3} \left (1-\sqrt {3}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {-1-x} x} \, dx,x,x^3\right )\\ &=\frac {2 \sqrt {2-\sqrt {3}} (1+x) \sqrt {\frac {1-x+x^2}{\left (1-\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1+\sqrt {3}+x}{1-\sqrt {3}+x}\right )|-7+4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {-\frac {1+x}{\left (1-\sqrt {3}+x\right )^2}} \sqrt {-1-x^3}}-\frac {1}{3} \left (2 \left (1-\sqrt {3}\right )\right ) \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,\sqrt {-1-x^3}\right )\\ &=\frac {2}{3} \left (1-\sqrt {3}\right ) \tan ^{-1}\left (\sqrt {-1-x^3}\right )+\frac {2 \sqrt {2-\sqrt {3}} (1+x) \sqrt {\frac {1-x+x^2}{\left (1-\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1+\sqrt {3}+x}{1-\sqrt {3}+x}\right )|-7+4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {-\frac {1+x}{\left (1-\sqrt {3}+x\right )^2}} \sqrt {-1-x^3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.03, size = 63, normalized size = 0.46 \[ \frac {x \sqrt {x^3+1} \, _2F_1\left (\frac {1}{3},\frac {1}{2};\frac {4}{3};-x^3\right )}{\sqrt {-x^3-1}}+\frac {2}{3} \left (1-\sqrt {3}\right ) \tan ^{-1}\left (\sqrt {-x^3-1}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(1 - Sqrt[3] + x)/(x*Sqrt[-1 - x^3]),x]

[Out]

(2*(1 - Sqrt[3])*ArcTan[Sqrt[-1 - x^3]])/3 + (x*Sqrt[1 + x^3]*Hypergeometric2F1[1/3, 1/2, 4/3, -x^3])/Sqrt[-1
- x^3]

________________________________________________________________________________________

fricas [F]  time = 0.93, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {\sqrt {-x^{3} - 1} {\left (x - \sqrt {3} + 1\right )}}{x^{4} + x}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x-3^(1/2))/x/(-x^3-1)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-x^3 - 1)*(x - sqrt(3) + 1)/(x^4 + x), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x - \sqrt {3} + 1}{\sqrt {-x^{3} - 1} x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x-3^(1/2))/x/(-x^3-1)^(1/2),x, algorithm="giac")

[Out]

integrate((x - sqrt(3) + 1)/(sqrt(-x^3 - 1)*x), x)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 135, normalized size = 0.98 \[ -\frac {2 i \sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {x +1}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x -\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \EllipticF \left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )}{3 \sqrt {-x^{3}-1}}-\frac {2 \sqrt {3}\, \arctan \left (\sqrt {-x^{3}-1}\right )}{3}+\frac {2 \arctan \left (\sqrt {-x^{3}-1}\right )}{3} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1+x-3^(1/2))/x/(-x^3-1)^(1/2),x)

[Out]

-2/3*I*3^(1/2)*(I*(x-1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2)*((x+1)/(3/2+1/2*I*3^(1/2)))^(1/2)*(-I*(x-1/2+1/2*I*3^(1
/2))*3^(1/2))^(1/2)/(-x^3-1)^(1/2)*EllipticF(1/3*3^(1/2)*(I*(x-1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2),(I*3^(1/2)/(3
/2+1/2*I*3^(1/2)))^(1/2))-2/3*3^(1/2)*arctan((-x^3-1)^(1/2))+2/3*arctan((-x^3-1)^(1/2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x - \sqrt {3} + 1}{\sqrt {-x^{3} - 1} x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x-3^(1/2))/x/(-x^3-1)^(1/2),x, algorithm="maxima")

[Out]

integrate((x - sqrt(3) + 1)/(sqrt(-x^3 - 1)*x), x)

________________________________________________________________________________________

mupad [B]  time = 4.10, size = 376, normalized size = 2.72 \[ \frac {\sqrt {3}\,\ln \left (\frac {{\left (\sqrt {-x^3-1}-\mathrm {i}\right )}^3\,\left (\sqrt {-x^3-1}+1{}\mathrm {i}\right )}{x^6}\right )\,1{}\mathrm {i}}{3}+\frac {\sqrt {x^3+1}\,\left (\frac {2\,\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\sqrt {\frac {x-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {\frac {1}{2}-x+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\mathrm {F}\left (\mathrm {asin}\left (\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )}{\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}}-\frac {2\,\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\sqrt {\frac {x-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {\frac {1}{2}-x+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\Pi \left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2};\mathrm {asin}\left (\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )}{\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}}\right )}{\sqrt {-x^3-1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x - 3^(1/2) + 1)/(x*(- x^3 - 1)^(1/2)),x)

[Out]

(3^(1/2)*log((((- x^3 - 1)^(1/2) - 1i)^3*((- x^3 - 1)^(1/2) + 1i))/x^6)*1i)/3 + ((x^3 + 1)^(1/2)*((2*((3^(1/2)
*1i)/2 + 3/2)*((x + (3^(1/2)*1i)/2 - 1/2)/((3^(1/2)*1i)/2 - 3/2))^(1/2)*((x + 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)
*(((3^(1/2)*1i)/2 - x + 1/2)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*ellipticF(asin(((x + 1)/((3^(1/2)*1i)/2 + 3/2))^(1/
2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2)))/(x^3 - x*(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2)
+ 1) - ((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2))^(1/2) - (2*((3^(1/2)*1i)/2 + 3/2)*((x + (3^(1/2)*1i)/2 -
 1/2)/((3^(1/2)*1i)/2 - 3/2))^(1/2)*((x + 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*(((3^(1/2)*1i)/2 - x + 1/2)/((3^(1/
2)*1i)/2 + 3/2))^(1/2)*ellipticPi((3^(1/2)*1i)/2 + 3/2, asin(((x + 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1/
2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2)))/(x^3 - x*(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) + 1) - ((3^(1
/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2))^(1/2)))/(- x^3 - 1)^(1/2)

________________________________________________________________________________________

sympy [A]  time = 5.51, size = 61, normalized size = 0.44 \[ - \frac {i x \Gamma \left (\frac {1}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{3}, \frac {1}{2} \\ \frac {4}{3} \end {matrix}\middle | {x^{3} e^{i \pi }} \right )}}{3 \Gamma \left (\frac {4}{3}\right )} - \frac {2 \sqrt {3} i \operatorname {asinh}{\left (\frac {1}{x^{\frac {3}{2}}} \right )}}{3} + \frac {2 i \operatorname {asinh}{\left (\frac {1}{x^{\frac {3}{2}}} \right )}}{3} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x-3**(1/2))/x/(-x**3-1)**(1/2),x)

[Out]

-I*x*gamma(1/3)*hyper((1/3, 1/2), (4/3,), x**3*exp_polar(I*pi))/(3*gamma(4/3)) - 2*sqrt(3)*I*asinh(x**(-3/2))/
3 + 2*I*asinh(x**(-3/2))/3

________________________________________________________________________________________