3.151 \(\int \frac {1-\sqrt {3}+x}{(c+d x) \sqrt {-1-x^3}} \, dx\)

Optimal. Leaf size=362 \[ -\frac {(x+1) \sqrt {\frac {x^2-x+1}{\left (x-\sqrt {3}+1\right )^2}} \left (c-\left (1-\sqrt {3}\right ) d\right ) \tanh ^{-1}\left (\frac {2 \sqrt {2+\sqrt {3}} \sqrt {-\frac {x+1}{\left (x-\sqrt {3}+1\right )^2}} \sqrt {c^2+c d+d^2}}{\sqrt {d} \sqrt {\frac {\left (x+\sqrt {3}+1\right )^2}{\left (x-\sqrt {3}+1\right )^2}+4 \sqrt {3}+7} \sqrt {c-d}}\right )}{\sqrt {d} \sqrt {-\frac {x+1}{\left (x-\sqrt {3}+1\right )^2}} \sqrt {-x^3-1} \sqrt {c-d} \sqrt {c^2+c d+d^2}}-\frac {4 \sqrt [4]{3} \sqrt {2-\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x-\sqrt {3}+1\right )^2}} \Pi \left (\frac {\left (c-\left (1-\sqrt {3}\right ) d\right )^2}{\left (c-\left (1+\sqrt {3}\right ) d\right )^2};\sin ^{-1}\left (\frac {x+\sqrt {3}+1}{x-\sqrt {3}+1}\right )|-7+4 \sqrt {3}\right )}{\sqrt {-\frac {x+1}{\left (x-\sqrt {3}+1\right )^2}} \sqrt {-x^3-1} \left (c-\sqrt {3} d-d\right )} \]

[Out]

-(1+x)*arctanh(2*(c^2+c*d+d^2)^(1/2)*((-1-x)/(1+x-3^(1/2))^2)^(1/2)*(1/2*6^(1/2)+1/2*2^(1/2))/(c-d)^(1/2)/d^(1
/2)/(7+4*3^(1/2)+(1+x+3^(1/2))^2/(1+x-3^(1/2))^2)^(1/2))*(c-d*(1-3^(1/2)))*((x^2-x+1)/(1+x-3^(1/2))^2)^(1/2)/(
c-d)^(1/2)/d^(1/2)/(c^2+c*d+d^2)^(1/2)/(-x^3-1)^(1/2)/((-1-x)/(1+x-3^(1/2))^2)^(1/2)+4*3^(1/4)*(1+x)*EllipticP
i((-1-x-3^(1/2))/(1+x-3^(1/2)),(c-d*(1-3^(1/2)))^2/(c-d*(1+3^(1/2)))^2,2*I-I*3^(1/2))*(1/2*6^(1/2)-1/2*2^(1/2)
)*((x^2-x+1)/(1+x-3^(1/2))^2)^(1/2)/(-d*3^(1/2)+c-d)/(-x^3-1)^(1/2)/((-1-x)/(1+x-3^(1/2))^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.79, antiderivative size = 364, normalized size of antiderivative = 1.01, number of steps used = 6, number of rules used = 6, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.207, Rules used = {2143, 2113, 537, 571, 93, 208} \[ \frac {4 \sqrt [4]{3} \sqrt {2-\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x-\sqrt {3}+1\right )^2}} \Pi \left (\frac {\left (c-\left (1-\sqrt {3}\right ) d\right )^2}{\left (c-\left (1+\sqrt {3}\right ) d\right )^2};-\sin ^{-1}\left (\frac {x+\sqrt {3}+1}{x-\sqrt {3}+1}\right )|-7+4 \sqrt {3}\right )}{\sqrt {-\frac {x+1}{\left (x-\sqrt {3}+1\right )^2}} \sqrt {-x^3-1} \left (c-\sqrt {3} d-d\right )}-\frac {(x+1) \sqrt {\frac {x^2-x+1}{\left (x-\sqrt {3}+1\right )^2}} \left (c-\left (1-\sqrt {3}\right ) d\right ) \tanh ^{-1}\left (\frac {2 \sqrt {2+\sqrt {3}} \sqrt {-\frac {x+1}{\left (x-\sqrt {3}+1\right )^2}} \sqrt {c^2+c d+d^2}}{\sqrt {d} \sqrt {\frac {\left (x+\sqrt {3}+1\right )^2}{\left (x-\sqrt {3}+1\right )^2}+4 \sqrt {3}+7} \sqrt {c-d}}\right )}{\sqrt {d} \sqrt {-\frac {x+1}{\left (x-\sqrt {3}+1\right )^2}} \sqrt {-x^3-1} \sqrt {c-d} \sqrt {c^2+c d+d^2}} \]

Antiderivative was successfully verified.

[In]

Int[(1 - Sqrt[3] + x)/((c + d*x)*Sqrt[-1 - x^3]),x]

[Out]

-(((c - (1 - Sqrt[3])*d)*(1 + x)*Sqrt[(1 - x + x^2)/(1 - Sqrt[3] + x)^2]*ArcTanh[(2*Sqrt[2 + Sqrt[3]]*Sqrt[c^2
 + c*d + d^2]*Sqrt[-((1 + x)/(1 - Sqrt[3] + x)^2)])/(Sqrt[c - d]*Sqrt[d]*Sqrt[7 + 4*Sqrt[3] + (1 + Sqrt[3] + x
)^2/(1 - Sqrt[3] + x)^2])])/(Sqrt[c - d]*Sqrt[d]*Sqrt[c^2 + c*d + d^2]*Sqrt[-((1 + x)/(1 - Sqrt[3] + x)^2)]*Sq
rt[-1 - x^3])) + (4*3^(1/4)*Sqrt[2 - Sqrt[3]]*(1 + x)*Sqrt[(1 - x + x^2)/(1 - Sqrt[3] + x)^2]*EllipticPi[(c -
(1 - Sqrt[3])*d)^2/(c - (1 + Sqrt[3])*d)^2, -ArcSin[(1 + Sqrt[3] + x)/(1 - Sqrt[3] + x)], -7 + 4*Sqrt[3]])/((c
 - d - Sqrt[3]*d)*Sqrt[-((1 + x)/(1 - Sqrt[3] + x)^2)]*Sqrt[-1 - x^3])

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 537

Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[(1*Ellipt
icPi[(b*c)/(a*d), ArcSin[Rt[-(d/c), 2]*x], (c*f)/(d*e)])/(a*Sqrt[c]*Sqrt[e]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b,
 c, d, e, f}, x] &&  !GtQ[d/c, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !( !GtQ[f/e, 0] && SimplerSqrtQ[-(f/e), -(d/c)
])

Rule 571

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_))^(r_.), x
_Symbol] :> Dist[1/n, Subst[Int[(a + b*x)^p*(c + d*x)^q*(e + f*x)^r, x], x, x^n], x] /; FreeQ[{a, b, c, d, e,
f, m, n, p, q, r}, x] && EqQ[m - n + 1, 0]

Rule 2113

Int[1/(((a_) + (b_.)*(x_))*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Dist[a, Int[1/((
a^2 - b^2*x^2)*Sqrt[c + d*x^2]*Sqrt[e + f*x^2]), x], x] - Dist[b, Int[x/((a^2 - b^2*x^2)*Sqrt[c + d*x^2]*Sqrt[
e + f*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f}, x]

Rule 2143

Int[((e_) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> With[{q = Simplify[((-1
+ Sqrt[3])*f)/e]}, Dist[(4*3^(1/4)*Sqrt[2 + Sqrt[3]]*f*(1 - q*x)*Sqrt[(1 + q*x + q^2*x^2)/(1 - Sqrt[3] - q*x)^
2])/(q*Sqrt[a + b*x^3]*Sqrt[-((1 - q*x)/(1 - Sqrt[3] - q*x)^2)]), Subst[Int[1/(((1 + Sqrt[3])*d + c*q + ((1 -
Sqrt[3])*d + c*q)*x)*Sqrt[1 - x^2]*Sqrt[7 + 4*Sqrt[3] + x^2]), x], x, (1 + Sqrt[3] - q*x)/(-1 + Sqrt[3] + q*x)
], x]] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] && EqQ[b*e^3 - 2*(5 - 3*Sqrt[3])*a*f^3, 0] && NeQ[
b*c^3 - 2*(5 + 3*Sqrt[3])*a*d^3, 0]

Rubi steps

\begin {align*} \int \frac {1-\sqrt {3}+x}{(c+d x) \sqrt {-1-x^3}} \, dx &=-\frac {\left (4 \sqrt [4]{3} \sqrt {2+\sqrt {3}} (1+x) \sqrt {\frac {1-x+x^2}{\left (1-\sqrt {3}+x\right )^2}}\right ) \operatorname {Subst}\left (\int \frac {1}{\left (-c+\left (1+\sqrt {3}\right ) d+\left (-c+\left (1-\sqrt {3}\right ) d\right ) x\right ) \sqrt {1-x^2} \sqrt {7+4 \sqrt {3}+x^2}} \, dx,x,\frac {1+\sqrt {3}+x}{-1+\sqrt {3}-x}\right )}{\sqrt {-\frac {1+x}{\left (1-\sqrt {3}+x\right )^2}} \sqrt {-1-x^3}}\\ &=-\frac {\left (4 \sqrt [4]{3} \sqrt {2+\sqrt {3}} \left (-c+d+\sqrt {3} d\right ) (1+x) \sqrt {\frac {1-x+x^2}{\left (1-\sqrt {3}+x\right )^2}}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {7+4 \sqrt {3}+x^2} \left (\left (-c+\left (1+\sqrt {3}\right ) d\right )^2-\left (-c+\left (1-\sqrt {3}\right ) d\right )^2 x^2\right )} \, dx,x,\frac {1+\sqrt {3}+x}{-1+\sqrt {3}-x}\right )}{\sqrt {-\frac {1+x}{\left (1-\sqrt {3}+x\right )^2}} \sqrt {-1-x^3}}+\frac {\left (4 \sqrt [4]{3} \sqrt {2+\sqrt {3}} \left (-c+\left (1-\sqrt {3}\right ) d\right ) (1+x) \sqrt {\frac {1-x+x^2}{\left (1-\sqrt {3}+x\right )^2}}\right ) \operatorname {Subst}\left (\int \frac {x}{\sqrt {1-x^2} \sqrt {7+4 \sqrt {3}+x^2} \left (\left (-c+\left (1+\sqrt {3}\right ) d\right )^2-\left (-c+\left (1-\sqrt {3}\right ) d\right )^2 x^2\right )} \, dx,x,\frac {1+\sqrt {3}+x}{-1+\sqrt {3}-x}\right )}{\sqrt {-\frac {1+x}{\left (1-\sqrt {3}+x\right )^2}} \sqrt {-1-x^3}}\\ &=\frac {4 \sqrt [4]{3} \sqrt {2-\sqrt {3}} (1+x) \sqrt {\frac {1-x+x^2}{\left (1-\sqrt {3}+x\right )^2}} \Pi \left (\frac {\left (c-\left (1-\sqrt {3}\right ) d\right )^2}{\left (c-\left (1+\sqrt {3}\right ) d\right )^2};-\sin ^{-1}\left (\frac {1+\sqrt {3}+x}{1-\sqrt {3}+x}\right )|-7+4 \sqrt {3}\right )}{\left (c-d-\sqrt {3} d\right ) \sqrt {-\frac {1+x}{\left (1-\sqrt {3}+x\right )^2}} \sqrt {-1-x^3}}+\frac {\left (2 \sqrt [4]{3} \sqrt {2+\sqrt {3}} \left (-c+\left (1-\sqrt {3}\right ) d\right ) (1+x) \sqrt {\frac {1-x+x^2}{\left (1-\sqrt {3}+x\right )^2}}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-x} \sqrt {7+4 \sqrt {3}+x} \left (\left (-c+\left (1+\sqrt {3}\right ) d\right )^2-\left (-c+\left (1-\sqrt {3}\right ) d\right )^2 x\right )} \, dx,x,\frac {\left (1+\sqrt {3}+x\right )^2}{\left (-1+\sqrt {3}-x\right )^2}\right )}{\sqrt {-\frac {1+x}{\left (1-\sqrt {3}+x\right )^2}} \sqrt {-1-x^3}}\\ &=\frac {4 \sqrt [4]{3} \sqrt {2-\sqrt {3}} (1+x) \sqrt {\frac {1-x+x^2}{\left (1-\sqrt {3}+x\right )^2}} \Pi \left (\frac {\left (c-\left (1-\sqrt {3}\right ) d\right )^2}{\left (c-\left (1+\sqrt {3}\right ) d\right )^2};-\sin ^{-1}\left (\frac {1+\sqrt {3}+x}{1-\sqrt {3}+x}\right )|-7+4 \sqrt {3}\right )}{\left (c-d-\sqrt {3} d\right ) \sqrt {-\frac {1+x}{\left (1-\sqrt {3}+x\right )^2}} \sqrt {-1-x^3}}+\frac {\left (4 \sqrt [4]{3} \sqrt {2+\sqrt {3}} \left (-c+\left (1-\sqrt {3}\right ) d\right ) (1+x) \sqrt {\frac {1-x+x^2}{\left (1-\sqrt {3}+x\right )^2}}\right ) \operatorname {Subst}\left (\int \frac {1}{\left (-c+\left (1-\sqrt {3}\right ) d\right )^2-\left (-c+\left (1+\sqrt {3}\right ) d\right )^2-\left (\left (7+4 \sqrt {3}\right ) \left (-c+\left (1-\sqrt {3}\right ) d\right )^2+\left (-c+\left (1+\sqrt {3}\right ) d\right )^2\right ) x^2} \, dx,x,\frac {2 \sqrt [4]{3} \sqrt {-\frac {1+x}{\left (1-\sqrt {3}+x\right )^2}}}{\sqrt {7+4 \sqrt {3}+\frac {\left (1+\sqrt {3}+x\right )^2}{\left (-1+\sqrt {3}-x\right )^2}}}\right )}{\sqrt {-\frac {1+x}{\left (1-\sqrt {3}+x\right )^2}} \sqrt {-1-x^3}}\\ &=-\frac {\left (c-\left (1-\sqrt {3}\right ) d\right ) (1+x) \sqrt {\frac {1-x+x^2}{\left (1-\sqrt {3}+x\right )^2}} \tanh ^{-1}\left (\frac {2 \sqrt {2+\sqrt {3}} \sqrt {c^2+c d+d^2} \sqrt {-\frac {1+x}{\left (1-\sqrt {3}+x\right )^2}}}{\sqrt {c-d} \sqrt {d} \sqrt {7+4 \sqrt {3}+\frac {\left (1+\sqrt {3}+x\right )^2}{\left (1-\sqrt {3}+x\right )^2}}}\right )}{\sqrt {c-d} \sqrt {d} \sqrt {c^2+c d+d^2} \sqrt {-\frac {1+x}{\left (1-\sqrt {3}+x\right )^2}} \sqrt {-1-x^3}}+\frac {4 \sqrt [4]{3} \sqrt {2-\sqrt {3}} (1+x) \sqrt {\frac {1-x+x^2}{\left (1-\sqrt {3}+x\right )^2}} \Pi \left (\frac {\left (c-\left (1-\sqrt {3}\right ) d\right )^2}{\left (c-\left (1+\sqrt {3}\right ) d\right )^2};-\sin ^{-1}\left (\frac {1+\sqrt {3}+x}{1-\sqrt {3}+x}\right )|-7+4 \sqrt {3}\right )}{\left (c-d-\sqrt {3} d\right ) \sqrt {-\frac {1+x}{\left (1-\sqrt {3}+x\right )^2}} \sqrt {-1-x^3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.61, size = 233, normalized size = 0.64 \[ \frac {2 \sqrt {\frac {x+1}{1+\sqrt [3]{-1}}} \left (-\frac {3 \left (\sqrt [3]{-1}-x\right ) \sqrt {\frac {\sqrt [3]{-1}-(-1)^{2/3} x}{1+\sqrt [3]{-1}}} F\left (\sin ^{-1}\left (\sqrt {\frac {(-1)^{2/3} x+1}{1+\sqrt [3]{-1}}}\right )|\sqrt [3]{-1}\right )}{\sqrt {\frac {(-1)^{2/3} x+1}{1+\sqrt [3]{-1}}}}+\frac {\sqrt [3]{-1} \left (1+\sqrt [3]{-1}\right ) \sqrt {x^2-x+1} \left (\sqrt {3} c-\left (\sqrt {3}-3\right ) d\right ) \Pi \left (\frac {i \sqrt {3} d}{c+\sqrt [3]{-1} d};\sin ^{-1}\left (\sqrt {\frac {(-1)^{2/3} x+1}{1+\sqrt [3]{-1}}}\right )|\sqrt [3]{-1}\right )}{c+\sqrt [3]{-1} d}\right )}{3 d \sqrt {-x^3-1}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(1 - Sqrt[3] + x)/((c + d*x)*Sqrt[-1 - x^3]),x]

[Out]

(2*Sqrt[(1 + x)/(1 + (-1)^(1/3))]*((-3*((-1)^(1/3) - x)*Sqrt[((-1)^(1/3) - (-1)^(2/3)*x)/(1 + (-1)^(1/3))]*Ell
ipticF[ArcSin[Sqrt[(1 + (-1)^(2/3)*x)/(1 + (-1)^(1/3))]], (-1)^(1/3)])/Sqrt[(1 + (-1)^(2/3)*x)/(1 + (-1)^(1/3)
)] + ((-1)^(1/3)*(1 + (-1)^(1/3))*(Sqrt[3]*c - (-3 + Sqrt[3])*d)*Sqrt[1 - x + x^2]*EllipticPi[(I*Sqrt[3]*d)/(c
 + (-1)^(1/3)*d), ArcSin[Sqrt[(1 + (-1)^(2/3)*x)/(1 + (-1)^(1/3))]], (-1)^(1/3)])/(c + (-1)^(1/3)*d)))/(3*d*Sq
rt[-1 - x^3])

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x-3^(1/2))/(d*x+c)/(-x^3-1)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x - \sqrt {3} + 1}{\sqrt {-x^{3} - 1} {\left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x-3^(1/2))/(d*x+c)/(-x^3-1)^(1/2),x, algorithm="giac")

[Out]

integrate((x - sqrt(3) + 1)/(sqrt(-x^3 - 1)*(d*x + c)), x)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 266, normalized size = 0.73 \[ -\frac {2 i \sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {x +1}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x -\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \EllipticF \left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )}{3 \sqrt {-x^{3}-1}\, d}+\frac {2 i \left (c +\sqrt {3}\, d -d \right ) \sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {x +1}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x -\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \EllipticPi \left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \frac {i \sqrt {3}}{\frac {c}{d}+\frac {1}{2}+\frac {i \sqrt {3}}{2}}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )}{3 \sqrt {-x^{3}-1}\, \left (\frac {c}{d}+\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) d^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1+x-3^(1/2))/(d*x+c)/(-x^3-1)^(1/2),x)

[Out]

-2/3*I/d*3^(1/2)*(I*(x-1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2)*((x+1)/(3/2+1/2*I*3^(1/2)))^(1/2)*(-I*(x-1/2+1/2*I*3^
(1/2))*3^(1/2))^(1/2)/(-x^3-1)^(1/2)*EllipticF(1/3*3^(1/2)*(I*(x-1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2),(I*3^(1/2)/
(3/2+1/2*I*3^(1/2)))^(1/2))+2/3*I*(c+3^(1/2)*d-d)/d^2*3^(1/2)*(I*(x-1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2)*((x+1)/(
3/2+1/2*I*3^(1/2)))^(1/2)*(-I*(x-1/2+1/2*I*3^(1/2))*3^(1/2))^(1/2)/(-x^3-1)^(1/2)/(c/d+1/2+1/2*I*3^(1/2))*Elli
pticPi(1/3*3^(1/2)*(I*(x-1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2),I*3^(1/2)/(c/d+1/2+1/2*I*3^(1/2)),(I*3^(1/2)/(3/2+1
/2*I*3^(1/2)))^(1/2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x - \sqrt {3} + 1}{\sqrt {-x^{3} - 1} {\left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x-3^(1/2))/(d*x+c)/(-x^3-1)^(1/2),x, algorithm="maxima")

[Out]

integrate((x - sqrt(3) + 1)/(sqrt(-x^3 - 1)*(d*x + c)), x)

________________________________________________________________________________________

mupad [F(-1)]  time = 0.00, size = -1, normalized size = -0.00 \[ \text {Hanged} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x - 3^(1/2) + 1)/((- x^3 - 1)^(1/2)*(c + d*x)),x)

[Out]

\text{Hanged}

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x - \sqrt {3} + 1}{\sqrt {- \left (x + 1\right ) \left (x^{2} - x + 1\right )} \left (c + d x\right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x-3**(1/2))/(d*x+c)/(-x**3-1)**(1/2),x)

[Out]

Integral((x - sqrt(3) + 1)/(sqrt(-(x + 1)*(x**2 - x + 1))*(c + d*x)), x)

________________________________________________________________________________________