3.135 \(\int \frac {x}{(1+\sqrt {3}+x) \sqrt {1+x^3}} \, dx\)

Optimal. Leaf size=136 \[ \frac {\sqrt {2} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} F\left (\sin ^{-1}\left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{3^{3/4} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}-\frac {\sqrt {2} \tan ^{-1}\left (\frac {\sqrt {3+2 \sqrt {3}} (x+1)}{\sqrt {x^3+1}}\right )}{3^{3/4}} \]

[Out]

-1/3*arctan((1+x)*(3+2*3^(1/2))^(1/2)/(x^3+1)^(1/2))*2^(1/2)*3^(1/4)+1/3*(1+x)*EllipticF((1+x-3^(1/2))/(1+x+3^
(1/2)),I*3^(1/2)+2*I)*2^(1/2)*((x^2-x+1)/(1+x+3^(1/2))^2)^(1/2)*3^(1/4)/(x^3+1)^(1/2)/((1+x)/(1+x+3^(1/2))^2)^
(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.22, antiderivative size = 136, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.190, Rules used = {2141, 218, 2140, 203} \[ \frac {\sqrt {2} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} F\left (\sin ^{-1}\left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{3^{3/4} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}-\frac {\sqrt {2} \tan ^{-1}\left (\frac {\sqrt {3+2 \sqrt {3}} (x+1)}{\sqrt {x^3+1}}\right )}{3^{3/4}} \]

Antiderivative was successfully verified.

[In]

Int[x/((1 + Sqrt[3] + x)*Sqrt[1 + x^3]),x]

[Out]

-((Sqrt[2]*ArcTan[(Sqrt[3 + 2*Sqrt[3]]*(1 + x))/Sqrt[1 + x^3]])/3^(3/4)) + (Sqrt[2]*(1 + x)*Sqrt[(1 - x + x^2)
/(1 + Sqrt[3] + x)^2]*EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(3^(3/4)*Sqrt[(1
 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 + x^3])

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 218

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 + Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3
])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(s*(s + r*x))/((1 + Sqr
t[3])*s + r*x)^2]), x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 2140

Int[((e_) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> With[{k = Simplify[(d*e
+ 2*c*f)/(c*f)]}, Dist[((1 + k)*e)/d, Subst[Int[1/(1 + (3 + 2*k)*a*x^2), x], x, (1 + ((1 + k)*d*x)/c)/Sqrt[a +
 b*x^3]], x]] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] && EqQ[b^2*c^6 - 20*a*b*c^3*d^3 - 8*a^2*d^6
, 0] && EqQ[6*a*d^4*e - c*f*(b*c^3 - 22*a*d^3), 0]

Rule 2141

Int[((e_.) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> -Dist[(6*a*d^4*e - c*f*
(b*c^3 - 22*a*d^3))/(c*d*(b*c^3 - 28*a*d^3)), Int[1/Sqrt[a + b*x^3], x], x] + Dist[(d*e - c*f)/(c*d*(b*c^3 - 2
8*a*d^3)), Int[(c*(b*c^3 - 22*a*d^3) + 6*a*d^4*x)/((c + d*x)*Sqrt[a + b*x^3]), x], x] /; FreeQ[{a, b, c, d, e,
 f}, x] && NeQ[d*e - c*f, 0] && EqQ[b^2*c^6 - 20*a*b*c^3*d^3 - 8*a^2*d^6, 0] && NeQ[6*a*d^4*e - c*f*(b*c^3 - 2
2*a*d^3), 0]

Rubi steps

\begin {align*} \int \frac {x}{\left (1+\sqrt {3}+x\right ) \sqrt {1+x^3}} \, dx &=\frac {\left (-1-\sqrt {3}\right ) \int \frac {\left (1+\sqrt {3}\right ) \left (-22+\left (1+\sqrt {3}\right )^3\right )+6 x}{\left (1+\sqrt {3}+x\right ) \sqrt {1+x^3}} \, dx}{\left (1+\sqrt {3}\right ) \left (-28+\left (1+\sqrt {3}\right )^3\right )}+\frac {\left (-22+\left (1+\sqrt {3}\right )^3\right ) \int \frac {1}{\sqrt {1+x^3}} \, dx}{-28+\left (1+\sqrt {3}\right )^3}\\ &=\frac {\sqrt {2} (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{3^{3/4} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}-\frac {\left (12 \left (-1-\sqrt {3}\right )\right ) \operatorname {Subst}\left (\int \frac {1}{1+\left (3+2 \sqrt {3}\right ) x^2} \, dx,x,\frac {1+x}{\sqrt {1+x^3}}\right )}{\left (1+\sqrt {3}\right ) \left (-28+\left (1+\sqrt {3}\right )^3\right )}\\ &=-\frac {\sqrt {2} \tan ^{-1}\left (\frac {\sqrt {3+2 \sqrt {3}} (1+x)}{\sqrt {1+x^3}}\right )}{3^{3/4}}+\frac {\sqrt {2} (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{3^{3/4} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.50, size = 209, normalized size = 1.54 \[ \frac {2 \sqrt {\frac {x+1}{1+\sqrt [3]{-1}}} \left (-\frac {\left (\sqrt [3]{-1}-x\right ) \sqrt {\frac {\sqrt [3]{-1}-(-1)^{2/3} x}{1+\sqrt [3]{-1}}} F\left (\sin ^{-1}\left (\sqrt {\frac {(-1)^{2/3} x+1}{1+\sqrt [3]{-1}}}\right )|\sqrt [3]{-1}\right )}{\sqrt {\frac {(-1)^{2/3} x+1}{1+\sqrt [3]{-1}}}}+\frac {2 i \left (1+\sqrt {3}\right ) \sqrt {x^2-x+1} \Pi \left (\frac {2 i \sqrt {3}}{3+(2+i) \sqrt {3}};\sin ^{-1}\left (\sqrt {\frac {(-1)^{2/3} x+1}{1+\sqrt [3]{-1}}}\right )|\sqrt [3]{-1}\right )}{3+(2+i) \sqrt {3}}\right )}{\sqrt {x^3+1}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[x/((1 + Sqrt[3] + x)*Sqrt[1 + x^3]),x]

[Out]

(2*Sqrt[(1 + x)/(1 + (-1)^(1/3))]*(-((((-1)^(1/3) - x)*Sqrt[((-1)^(1/3) - (-1)^(2/3)*x)/(1 + (-1)^(1/3))]*Elli
pticF[ArcSin[Sqrt[(1 + (-1)^(2/3)*x)/(1 + (-1)^(1/3))]], (-1)^(1/3)])/Sqrt[(1 + (-1)^(2/3)*x)/(1 + (-1)^(1/3))
]) + ((2*I)*(1 + Sqrt[3])*Sqrt[1 - x + x^2]*EllipticPi[((2*I)*Sqrt[3])/(3 + (2 + I)*Sqrt[3]), ArcSin[Sqrt[(1 +
 (-1)^(2/3)*x)/(1 + (-1)^(1/3))]], (-1)^(1/3)])/(3 + (2 + I)*Sqrt[3])))/Sqrt[1 + x^3]

________________________________________________________________________________________

fricas [F]  time = 0.49, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {x^{3} + 1} {\left (x^{2} - \sqrt {3} x + x\right )}}{x^{5} + 2 \, x^{4} - 2 \, x^{3} + x^{2} + 2 \, x - 2}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(1+x+3^(1/2))/(x^3+1)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(x^3 + 1)*(x^2 - sqrt(3)*x + x)/(x^5 + 2*x^4 - 2*x^3 + x^2 + 2*x - 2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x}{\sqrt {x^{3} + 1} {\left (x + \sqrt {3} + 1\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(1+x+3^(1/2))/(x^3+1)^(1/2),x, algorithm="giac")

[Out]

integrate(x/(sqrt(x^3 + 1)*(x + sqrt(3) + 1)), x)

________________________________________________________________________________________

maple [B]  time = 0.04, size = 255, normalized size = 1.88 \[ \frac {2 \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \EllipticF \left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {x^{3}+1}}+\frac {2 \left (-1-\sqrt {3}\right ) \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {3}\, \EllipticPi \left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \frac {\left (-\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}{3}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{3 \sqrt {x^{3}+1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(1+x+3^(1/2))/(x^3+1)^(1/2),x)

[Out]

2*(3/2-1/2*I*3^(1/2))*((x+1)/(3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2-1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2)*((x
-1/2+1/2*I*3^(1/2))/(-3/2+1/2*I*3^(1/2)))^(1/2)/(x^3+1)^(1/2)*EllipticF(((x+1)/(3/2-1/2*I*3^(1/2)))^(1/2),((-3
/2+1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2))+2/3*(-1-3^(1/2))*(3/2-1/2*I*3^(1/2))*((x+1)/(3/2-1/2*I*3^(1/2))
)^(1/2)*((x-1/2-1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2+1/2*I*3^(1/2))/(-3/2+1/2*I*3^(1/2)))^(1/2)/
(x^3+1)^(1/2)*3^(1/2)*EllipticPi(((x+1)/(3/2-1/2*I*3^(1/2)))^(1/2),1/3*(-3/2+1/2*I*3^(1/2))*3^(1/2),((-3/2+1/2
*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x}{\sqrt {x^{3} + 1} {\left (x + \sqrt {3} + 1\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(1+x+3^(1/2))/(x^3+1)^(1/2),x, algorithm="maxima")

[Out]

integrate(x/(sqrt(x^3 + 1)*(x + sqrt(3) + 1)), x)

________________________________________________________________________________________

mupad [F(-1)]  time = 0.00, size = -1, normalized size = -0.01 \[ \text {Hanged} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/((x^3 + 1)^(1/2)*(x + 3^(1/2) + 1)),x)

[Out]

\text{Hanged}

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x}{\sqrt {\left (x + 1\right ) \left (x^{2} - x + 1\right )} \left (x + 1 + \sqrt {3}\right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(1+x+3**(1/2))/(x**3+1)**(1/2),x)

[Out]

Integral(x/(sqrt((x + 1)*(x**2 - x + 1))*(x + 1 + sqrt(3))), x)

________________________________________________________________________________________