3.114 \(\int \frac {1-\sqrt {3}-x}{(1+\sqrt {3}-x) \sqrt {1-x^3}} \, dx\)

Optimal. Leaf size=46 \[ \frac {2 \tan ^{-1}\left (\frac {\sqrt {3+2 \sqrt {3}} (1-x)}{\sqrt {1-x^3}}\right )}{\sqrt {3+2 \sqrt {3}}} \]

[Out]

2*arctan((1-x)*(3+2*3^(1/2))^(1/2)/(-x^3+1)^(1/2))/(3+2*3^(1/2))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 46, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.056, Rules used = {2140, 203} \[ \frac {2 \tan ^{-1}\left (\frac {\sqrt {3+2 \sqrt {3}} (1-x)}{\sqrt {1-x^3}}\right )}{\sqrt {3+2 \sqrt {3}}} \]

Antiderivative was successfully verified.

[In]

Int[(1 - Sqrt[3] - x)/((1 + Sqrt[3] - x)*Sqrt[1 - x^3]),x]

[Out]

(2*ArcTan[(Sqrt[3 + 2*Sqrt[3]]*(1 - x))/Sqrt[1 - x^3]])/Sqrt[3 + 2*Sqrt[3]]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 2140

Int[((e_) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> With[{k = Simplify[(d*e
+ 2*c*f)/(c*f)]}, Dist[((1 + k)*e)/d, Subst[Int[1/(1 + (3 + 2*k)*a*x^2), x], x, (1 + ((1 + k)*d*x)/c)/Sqrt[a +
 b*x^3]], x]] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] && EqQ[b^2*c^6 - 20*a*b*c^3*d^3 - 8*a^2*d^6
, 0] && EqQ[6*a*d^4*e - c*f*(b*c^3 - 22*a*d^3), 0]

Rubi steps

\begin {align*} \int \frac {1-\sqrt {3}-x}{\left (1+\sqrt {3}-x\right ) \sqrt {1-x^3}} \, dx &=2 \operatorname {Subst}\left (\int \frac {1}{1+\left (3+2 \sqrt {3}\right ) x^2} \, dx,x,\frac {1-x}{\sqrt {1-x^3}}\right )\\ &=\frac {2 \tan ^{-1}\left (\frac {\sqrt {3+2 \sqrt {3}} (1-x)}{\sqrt {1-x^3}}\right )}{\sqrt {3+2 \sqrt {3}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.49, size = 267, normalized size = 5.80 \[ \frac {2 \sqrt {6} \sqrt {\frac {i (x-1)}{\sqrt {3}-3 i}} \left (\sqrt {2 i x+\sqrt {3}+i} \left (\left (\sqrt {3}+(2+i)\right ) x+i \sqrt {3}+(1+2 i)\right ) F\left (\sin ^{-1}\left (\frac {\sqrt {-2 i x+\sqrt {3}-i}}{\sqrt {2} \sqrt [4]{3}}\right )|\frac {2 \sqrt {3}}{-3 i+\sqrt {3}}\right )-4 i \sqrt {-2 i x+\sqrt {3}-i} \sqrt {x^2+x+1} \Pi \left (\frac {2 i \sqrt {3}}{3+(2+i) \sqrt {3}};\sin ^{-1}\left (\frac {\sqrt {-2 i x+\sqrt {3}-i}}{\sqrt {2} \sqrt [4]{3}}\right )|\frac {2 \sqrt {3}}{-3 i+\sqrt {3}}\right )\right )}{\left (3+(2+i) \sqrt {3}\right ) \sqrt {-2 i x+\sqrt {3}-i} \sqrt {1-x^3}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(1 - Sqrt[3] - x)/((1 + Sqrt[3] - x)*Sqrt[1 - x^3]),x]

[Out]

(2*Sqrt[6]*Sqrt[(I*(-1 + x))/(-3*I + Sqrt[3])]*(Sqrt[I + Sqrt[3] + (2*I)*x]*((1 + 2*I) + I*Sqrt[3] + ((2 + I)
+ Sqrt[3])*x)*EllipticF[ArcSin[Sqrt[-I + Sqrt[3] - (2*I)*x]/(Sqrt[2]*3^(1/4))], (2*Sqrt[3])/(-3*I + Sqrt[3])]
- (4*I)*Sqrt[-I + Sqrt[3] - (2*I)*x]*Sqrt[1 + x + x^2]*EllipticPi[((2*I)*Sqrt[3])/(3 + (2 + I)*Sqrt[3]), ArcSi
n[Sqrt[-I + Sqrt[3] - (2*I)*x]/(Sqrt[2]*3^(1/4))], (2*Sqrt[3])/(-3*I + Sqrt[3])]))/((3 + (2 + I)*Sqrt[3])*Sqrt
[-I + Sqrt[3] - (2*I)*x]*Sqrt[1 - x^3])

________________________________________________________________________________________

fricas [A]  time = 0.50, size = 59, normalized size = 1.28 \[ \frac {1}{3} \, \sqrt {3} \sqrt {2 \, \sqrt {3} - 3} \arctan \left (\frac {\sqrt {-x^{3} + 1} {\left (\sqrt {3} {\left (x^{2} + 4 \, x - 2\right )} + 6 \, x - 6\right )} \sqrt {2 \, \sqrt {3} - 3}}{6 \, {\left (x^{3} - 1\right )}}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-x-3^(1/2))/(1-x+3^(1/2))/(-x^3+1)^(1/2),x, algorithm="fricas")

[Out]

1/3*sqrt(3)*sqrt(2*sqrt(3) - 3)*arctan(1/6*sqrt(-x^3 + 1)*(sqrt(3)*(x^2 + 4*x - 2) + 6*x - 6)*sqrt(2*sqrt(3) -
 3)/(x^3 - 1))

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-x-3^(1/2))/(1-x+3^(1/2))/(-x^3+1)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Unab
le to divide, perhaps due to rounding error%%%{%%{[1,-1]:[1,0,-3]%%},[2]%%%} / %%%{%%{[2,4]:[1,0,-3]%%},[2]%%%
} Error: Bad Argument Value

________________________________________________________________________________________

maple [C]  time = 0.04, size = 247, normalized size = 5.37 \[ -\frac {2 i \sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {x -1}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x +\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \EllipticF \left (\frac {\sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )}{3 \sqrt {-x^{3}+1}}-\frac {4 i \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {x -1}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x +\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \EllipticPi \left (\frac {\sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \frac {i \sqrt {3}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}-\sqrt {3}}, \sqrt {\frac {i \sqrt {3}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {-x^{3}+1}\, \left (-\frac {3}{2}+\frac {i \sqrt {3}}{2}-\sqrt {3}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1-x-3^(1/2))/(1-x+3^(1/2))/(-x^3+1)^(1/2),x)

[Out]

-2/3*I*3^(1/2)*(I*(x+1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2)*((x-1)/(-3/2+1/2*I*3^(1/2)))^(1/2)*(-I*(x+1/2+1/2*I*3^(
1/2))*3^(1/2))^(1/2)/(-x^3+1)^(1/2)*EllipticF(1/3*3^(1/2)*(I*(x+1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2),(I*3^(1/2)/(
-3/2+1/2*I*3^(1/2)))^(1/2))-4*I*(I*(x+1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2)*((x-1)/(-3/2+1/2*I*3^(1/2)))^(1/2)*(-I
*(x+1/2+1/2*I*3^(1/2))*3^(1/2))^(1/2)/(-x^3+1)^(1/2)/(-3/2+1/2*I*3^(1/2)-3^(1/2))*EllipticPi(1/3*3^(1/2)*(I*(x
+1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2),I*3^(1/2)/(-3/2+1/2*I*3^(1/2)-3^(1/2)),(I*3^(1/2)/(-3/2+1/2*I*3^(1/2)))^(1/
2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x + \sqrt {3} - 1}{\sqrt {-x^{3} + 1} {\left (x - \sqrt {3} - 1\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-x-3^(1/2))/(1-x+3^(1/2))/(-x^3+1)^(1/2),x, algorithm="maxima")

[Out]

integrate((x + sqrt(3) - 1)/(sqrt(-x^3 + 1)*(x - sqrt(3) - 1)), x)

________________________________________________________________________________________

mupad [F(-1)]  time = 0.00, size = -1, normalized size = -0.02 \[ \text {Hanged} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(x + 3^(1/2) - 1)/((1 - x^3)^(1/2)*(3^(1/2) - x + 1)),x)

[Out]

\text{Hanged}

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x - 1 + \sqrt {3}}{\sqrt {- \left (x - 1\right ) \left (x^{2} + x + 1\right )} \left (x - \sqrt {3} - 1\right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-x-3**(1/2))/(1-x+3**(1/2))/(-x**3+1)**(1/2),x)

[Out]

Integral((x - 1 + sqrt(3))/(sqrt(-(x - 1)*(x**2 + x + 1))*(x - sqrt(3) - 1)), x)

________________________________________________________________________________________