3.1012 \(\int \frac {\sqrt {-a x^2+b x \sqrt {\frac {a}{b^2}+\frac {a^2 x^2}{b^2}}}}{x \sqrt {\frac {a}{b^2}+\frac {a^2 x^2}{b^2}}} \, dx\)

Optimal. Leaf size=46 \[ \frac {\sqrt {2} b \sin ^{-1}\left (\frac {a x-b \sqrt {\frac {a^2 x^2}{b^2}+\frac {a}{b^2}}}{\sqrt {a}}\right )}{\sqrt {a}} \]

[Out]

b*arcsin((a*x-b*(a/b^2+a^2*x^2/b^2)^(1/2))/a^(1/2))*2^(1/2)/a^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.62, antiderivative size = 46, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 58, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.034, Rules used = {2130, 216} \[ \frac {\sqrt {2} b \sin ^{-1}\left (\frac {a x-b \sqrt {\frac {a^2 x^2}{b^2}+\frac {a}{b^2}}}{\sqrt {a}}\right )}{\sqrt {a}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[-(a*x^2) + b*x*Sqrt[a/b^2 + (a^2*x^2)/b^2]]/(x*Sqrt[a/b^2 + (a^2*x^2)/b^2]),x]

[Out]

(Sqrt[2]*b*ArcSin[(a*x - b*Sqrt[a/b^2 + (a^2*x^2)/b^2])/Sqrt[a]])/Sqrt[a]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 2130

Int[Sqrt[(a_.)*(x_)^2 + (b_.)*(x_)*Sqrt[(c_) + (d_.)*(x_)^2]]/((x_)*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> D
ist[(Sqrt[2]*b)/a, Subst[Int[1/Sqrt[1 + x^2/a], x], x, a*x + b*Sqrt[c + d*x^2]], x] /; FreeQ[{a, b, c, d}, x]
&& EqQ[a^2 - b^2*d, 0] && EqQ[b^2*c + a, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {-a x^2+b x \sqrt {\frac {a}{b^2}+\frac {a^2 x^2}{b^2}}}}{x \sqrt {\frac {a}{b^2}+\frac {a^2 x^2}{b^2}}} \, dx &=-\frac {\left (\sqrt {2} b\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x^2}{a}}} \, dx,x,-a x+b \sqrt {\frac {a}{b^2}+\frac {a^2 x^2}{b^2}}\right )}{a}\\ &=\frac {\sqrt {2} b \sin ^{-1}\left (\frac {a x-b \sqrt {\frac {a}{b^2}+\frac {a^2 x^2}{b^2}}}{\sqrt {a}}\right )}{\sqrt {a}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 1.19, size = 161, normalized size = 3.50 \[ \frac {\sqrt {2} b^2 \sqrt {\frac {a \left (a x^2+1\right )}{b^2}} \sqrt {a x \left (a x-b \sqrt {\frac {a \left (a x^2+1\right )}{b^2}}\right )} \sqrt {x \left (b \sqrt {\frac {a \left (a x^2+1\right )}{b^2}}-a x\right )} \tanh ^{-1}\left (\frac {\sqrt {a x \left (a x-b \sqrt {\frac {a \left (a x^2+1\right )}{b^2}}\right )}}{\sqrt {2} a x}\right )}{a^2 \left (-b x^2 \sqrt {\frac {a \left (a x^2+1\right )}{b^2}}+a x^3+x\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[-(a*x^2) + b*x*Sqrt[a/b^2 + (a^2*x^2)/b^2]]/(x*Sqrt[a/b^2 + (a^2*x^2)/b^2]),x]

[Out]

(Sqrt[2]*b^2*Sqrt[(a*(1 + a*x^2))/b^2]*Sqrt[a*x*(a*x - b*Sqrt[(a*(1 + a*x^2))/b^2])]*Sqrt[x*(-(a*x) + b*Sqrt[(
a*(1 + a*x^2))/b^2])]*ArcTanh[Sqrt[a*x*(a*x - b*Sqrt[(a*(1 + a*x^2))/b^2])]/(Sqrt[2]*a*x)])/(a^2*(x + a*x^3 -
b*x^2*Sqrt[(a*(1 + a*x^2))/b^2]))

________________________________________________________________________________________

fricas [A]  time = 12.88, size = 161, normalized size = 3.50 \[ \left [\frac {1}{2} \, \sqrt {2} b \sqrt {-\frac {1}{a}} \log \left (4 \, a x^{2} - 4 \, b x \sqrt {\frac {a^{2} x^{2} + a}{b^{2}}} + 2 \, \sqrt {-a x^{2} + b x \sqrt {\frac {a^{2} x^{2} + a}{b^{2}}}} {\left (\sqrt {2} a x \sqrt {-\frac {1}{a}} - \sqrt {2} b \sqrt {-\frac {1}{a}} \sqrt {\frac {a^{2} x^{2} + a}{b^{2}}}\right )} + 1\right ), -\frac {\sqrt {2} b \arctan \left (\frac {\sqrt {2} \sqrt {-a x^{2} + b x \sqrt {\frac {a^{2} x^{2} + a}{b^{2}}}}}{2 \, \sqrt {a} x}\right )}{\sqrt {a}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*x^2+b*x*(a/b^2+a^2*x^2/b^2)^(1/2))^(1/2)/x/(a/b^2+a^2*x^2/b^2)^(1/2),x, algorithm="fricas")

[Out]

[1/2*sqrt(2)*b*sqrt(-1/a)*log(4*a*x^2 - 4*b*x*sqrt((a^2*x^2 + a)/b^2) + 2*sqrt(-a*x^2 + b*x*sqrt((a^2*x^2 + a)
/b^2))*(sqrt(2)*a*x*sqrt(-1/a) - sqrt(2)*b*sqrt(-1/a)*sqrt((a^2*x^2 + a)/b^2)) + 1), -sqrt(2)*b*arctan(1/2*sqr
t(2)*sqrt(-a*x^2 + b*x*sqrt((a^2*x^2 + a)/b^2))/(sqrt(a)*x))/sqrt(a)]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {-a x^{2} + \sqrt {\frac {a^{2} x^{2}}{b^{2}} + \frac {a}{b^{2}}} b x}}{\sqrt {\frac {a^{2} x^{2}}{b^{2}} + \frac {a}{b^{2}}} x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*x^2+b*x*(a/b^2+a^2*x^2/b^2)^(1/2))^(1/2)/x/(a/b^2+a^2*x^2/b^2)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(-a*x^2 + sqrt(a^2*x^2/b^2 + a/b^2)*b*x)/(sqrt(a^2*x^2/b^2 + a/b^2)*x), x)

________________________________________________________________________________________

maple [F]  time = 0.09, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {-a \,x^{2}+\sqrt {\frac {a^{2} x^{2}}{b^{2}}+\frac {a}{b^{2}}}\, b x}}{\sqrt {\frac {a^{2} x^{2}}{b^{2}}+\frac {a}{b^{2}}}\, x}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-a*x^2+b*x*(a/b^2+a^2/b^2*x^2)^(1/2))^(1/2)/x/(a/b^2+a^2/b^2*x^2)^(1/2),x)

[Out]

int((-a*x^2+b*x*(a/b^2+a^2/b^2*x^2)^(1/2))^(1/2)/x/(a/b^2+a^2/b^2*x^2)^(1/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {-a x^{2} + \sqrt {\frac {a^{2} x^{2}}{b^{2}} + \frac {a}{b^{2}}} b x}}{\sqrt {\frac {a^{2} x^{2}}{b^{2}} + \frac {a}{b^{2}}} x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*x^2+b*x*(a/b^2+a^2*x^2/b^2)^(1/2))^(1/2)/x/(a/b^2+a^2*x^2/b^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(-a*x^2 + sqrt(a^2*x^2/b^2 + a/b^2)*b*x)/(sqrt(a^2*x^2/b^2 + a/b^2)*x), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int \frac {\sqrt {b\,x\,\sqrt {\frac {a}{b^2}+\frac {a^2\,x^2}{b^2}}-a\,x^2}}{x\,\sqrt {\frac {a}{b^2}+\frac {a^2\,x^2}{b^2}}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x*(a/b^2 + (a^2*x^2)/b^2)^(1/2) - a*x^2)^(1/2)/(x*(a/b^2 + (a^2*x^2)/b^2)^(1/2)),x)

[Out]

int((b*x*(a/b^2 + (a^2*x^2)/b^2)^(1/2) - a*x^2)^(1/2)/(x*(a/b^2 + (a^2*x^2)/b^2)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {- x \left (a x - b \sqrt {\frac {a^{2} x^{2}}{b^{2}} + \frac {a}{b^{2}}}\right )}}{x \sqrt {\frac {a \left (a x^{2} + 1\right )}{b^{2}}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*x**2+b*x*(a/b**2+a**2*x**2/b**2)**(1/2))**(1/2)/x/(a/b**2+a**2*x**2/b**2)**(1/2),x)

[Out]

Integral(sqrt(-x*(a*x - b*sqrt(a**2*x**2/b**2 + a/b**2)))/(x*sqrt(a*(a*x**2 + 1)/b**2)), x)

________________________________________________________________________________________