3.411 \(\int \frac {1}{(a+c x^4)^3} \, dx\)

Optimal. Leaf size=219 \[ -\frac {21 \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{128 \sqrt {2} a^{11/4} \sqrt [4]{c}}+\frac {21 \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{128 \sqrt {2} a^{11/4} \sqrt [4]{c}}-\frac {21 \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{64 \sqrt {2} a^{11/4} \sqrt [4]{c}}+\frac {21 \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{64 \sqrt {2} a^{11/4} \sqrt [4]{c}}+\frac {7 x}{32 a^2 \left (a+c x^4\right )}+\frac {x}{8 a \left (a+c x^4\right )^2} \]

[Out]

1/8*x/a/(c*x^4+a)^2+7/32*x/a^2/(c*x^4+a)+21/128*arctan(-1+c^(1/4)*x*2^(1/2)/a^(1/4))/a^(11/4)/c^(1/4)*2^(1/2)+
21/128*arctan(1+c^(1/4)*x*2^(1/2)/a^(1/4))/a^(11/4)/c^(1/4)*2^(1/2)-21/256*ln(-a^(1/4)*c^(1/4)*x*2^(1/2)+a^(1/
2)+x^2*c^(1/2))/a^(11/4)/c^(1/4)*2^(1/2)+21/256*ln(a^(1/4)*c^(1/4)*x*2^(1/2)+a^(1/2)+x^2*c^(1/2))/a^(11/4)/c^(
1/4)*2^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.14, antiderivative size = 219, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 7, integrand size = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.778, Rules used = {199, 211, 1165, 628, 1162, 617, 204} \[ \frac {7 x}{32 a^2 \left (a+c x^4\right )}-\frac {21 \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{128 \sqrt {2} a^{11/4} \sqrt [4]{c}}+\frac {21 \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{128 \sqrt {2} a^{11/4} \sqrt [4]{c}}-\frac {21 \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{64 \sqrt {2} a^{11/4} \sqrt [4]{c}}+\frac {21 \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{64 \sqrt {2} a^{11/4} \sqrt [4]{c}}+\frac {x}{8 a \left (a+c x^4\right )^2} \]

Antiderivative was successfully verified.

[In]

Int[(a + c*x^4)^(-3),x]

[Out]

x/(8*a*(a + c*x^4)^2) + (7*x)/(32*a^2*(a + c*x^4)) - (21*ArcTan[1 - (Sqrt[2]*c^(1/4)*x)/a^(1/4)])/(64*Sqrt[2]*
a^(11/4)*c^(1/4)) + (21*ArcTan[1 + (Sqrt[2]*c^(1/4)*x)/a^(1/4)])/(64*Sqrt[2]*a^(11/4)*c^(1/4)) - (21*Log[Sqrt[
a] - Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/(128*Sqrt[2]*a^(11/4)*c^(1/4)) + (21*Log[Sqrt[a] + Sqrt[2]*a^(1
/4)*c^(1/4)*x + Sqrt[c]*x^2])/(128*Sqrt[2]*a^(11/4)*c^(1/4))

Rule 199

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[(x*(a + b*x^n)^(p + 1))/(a*n*(p + 1)), x] + Dist[(n*(p +
 1) + 1)/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[p, -1] && (In
tegerQ[2*p] || (n == 2 && IntegerQ[4*p]) || (n == 2 && IntegerQ[3*p]) || Denominator[p + 1/n] < Denominator[p]
)

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rubi steps

\begin {align*} \int \frac {1}{\left (a+c x^4\right )^3} \, dx &=\frac {x}{8 a \left (a+c x^4\right )^2}+\frac {7 \int \frac {1}{\left (a+c x^4\right )^2} \, dx}{8 a}\\ &=\frac {x}{8 a \left (a+c x^4\right )^2}+\frac {7 x}{32 a^2 \left (a+c x^4\right )}+\frac {21 \int \frac {1}{a+c x^4} \, dx}{32 a^2}\\ &=\frac {x}{8 a \left (a+c x^4\right )^2}+\frac {7 x}{32 a^2 \left (a+c x^4\right )}+\frac {21 \int \frac {\sqrt {a}-\sqrt {c} x^2}{a+c x^4} \, dx}{64 a^{5/2}}+\frac {21 \int \frac {\sqrt {a}+\sqrt {c} x^2}{a+c x^4} \, dx}{64 a^{5/2}}\\ &=\frac {x}{8 a \left (a+c x^4\right )^2}+\frac {7 x}{32 a^2 \left (a+c x^4\right )}+\frac {21 \int \frac {1}{\frac {\sqrt {a}}{\sqrt {c}}-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+x^2} \, dx}{128 a^{5/2} \sqrt {c}}+\frac {21 \int \frac {1}{\frac {\sqrt {a}}{\sqrt {c}}+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+x^2} \, dx}{128 a^{5/2} \sqrt {c}}-\frac {21 \int \frac {\frac {\sqrt {2} \sqrt [4]{a}}{\sqrt [4]{c}}+2 x}{-\frac {\sqrt {a}}{\sqrt {c}}-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}-x^2} \, dx}{128 \sqrt {2} a^{11/4} \sqrt [4]{c}}-\frac {21 \int \frac {\frac {\sqrt {2} \sqrt [4]{a}}{\sqrt [4]{c}}-2 x}{-\frac {\sqrt {a}}{\sqrt {c}}+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}-x^2} \, dx}{128 \sqrt {2} a^{11/4} \sqrt [4]{c}}\\ &=\frac {x}{8 a \left (a+c x^4\right )^2}+\frac {7 x}{32 a^2 \left (a+c x^4\right )}-\frac {21 \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{128 \sqrt {2} a^{11/4} \sqrt [4]{c}}+\frac {21 \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{128 \sqrt {2} a^{11/4} \sqrt [4]{c}}+\frac {21 \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{64 \sqrt {2} a^{11/4} \sqrt [4]{c}}-\frac {21 \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{64 \sqrt {2} a^{11/4} \sqrt [4]{c}}\\ &=\frac {x}{8 a \left (a+c x^4\right )^2}+\frac {7 x}{32 a^2 \left (a+c x^4\right )}-\frac {21 \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{64 \sqrt {2} a^{11/4} \sqrt [4]{c}}+\frac {21 \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{64 \sqrt {2} a^{11/4} \sqrt [4]{c}}-\frac {21 \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{128 \sqrt {2} a^{11/4} \sqrt [4]{c}}+\frac {21 \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{128 \sqrt {2} a^{11/4} \sqrt [4]{c}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.08, size = 200, normalized size = 0.91 \[ \frac {\frac {32 a^{7/4} x}{\left (a+c x^4\right )^2}+\frac {56 a^{3/4} x}{a+c x^4}-\frac {21 \sqrt {2} \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{\sqrt [4]{c}}+\frac {21 \sqrt {2} \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{\sqrt [4]{c}}-\frac {42 \sqrt {2} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt [4]{c}}+\frac {42 \sqrt {2} \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{\sqrt [4]{c}}}{256 a^{11/4}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + c*x^4)^(-3),x]

[Out]

((32*a^(7/4)*x)/(a + c*x^4)^2 + (56*a^(3/4)*x)/(a + c*x^4) - (42*Sqrt[2]*ArcTan[1 - (Sqrt[2]*c^(1/4)*x)/a^(1/4
)])/c^(1/4) + (42*Sqrt[2]*ArcTan[1 + (Sqrt[2]*c^(1/4)*x)/a^(1/4)])/c^(1/4) - (21*Sqrt[2]*Log[Sqrt[a] - Sqrt[2]
*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/c^(1/4) + (21*Sqrt[2]*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2
])/c^(1/4))/(256*a^(11/4))

________________________________________________________________________________________

fricas [A]  time = 0.64, size = 232, normalized size = 1.06 \[ \frac {28 \, c x^{5} + 84 \, {\left (a^{2} c^{2} x^{8} + 2 \, a^{3} c x^{4} + a^{4}\right )} \left (-\frac {1}{a^{11} c}\right )^{\frac {1}{4}} \arctan \left (-a^{8} c x \left (-\frac {1}{a^{11} c}\right )^{\frac {3}{4}} + \sqrt {a^{6} \sqrt {-\frac {1}{a^{11} c}} + x^{2}} a^{8} c \left (-\frac {1}{a^{11} c}\right )^{\frac {3}{4}}\right ) + 21 \, {\left (a^{2} c^{2} x^{8} + 2 \, a^{3} c x^{4} + a^{4}\right )} \left (-\frac {1}{a^{11} c}\right )^{\frac {1}{4}} \log \left (a^{3} \left (-\frac {1}{a^{11} c}\right )^{\frac {1}{4}} + x\right ) - 21 \, {\left (a^{2} c^{2} x^{8} + 2 \, a^{3} c x^{4} + a^{4}\right )} \left (-\frac {1}{a^{11} c}\right )^{\frac {1}{4}} \log \left (-a^{3} \left (-\frac {1}{a^{11} c}\right )^{\frac {1}{4}} + x\right ) + 44 \, a x}{128 \, {\left (a^{2} c^{2} x^{8} + 2 \, a^{3} c x^{4} + a^{4}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x^4+a)^3,x, algorithm="fricas")

[Out]

1/128*(28*c*x^5 + 84*(a^2*c^2*x^8 + 2*a^3*c*x^4 + a^4)*(-1/(a^11*c))^(1/4)*arctan(-a^8*c*x*(-1/(a^11*c))^(3/4)
 + sqrt(a^6*sqrt(-1/(a^11*c)) + x^2)*a^8*c*(-1/(a^11*c))^(3/4)) + 21*(a^2*c^2*x^8 + 2*a^3*c*x^4 + a^4)*(-1/(a^
11*c))^(1/4)*log(a^3*(-1/(a^11*c))^(1/4) + x) - 21*(a^2*c^2*x^8 + 2*a^3*c*x^4 + a^4)*(-1/(a^11*c))^(1/4)*log(-
a^3*(-1/(a^11*c))^(1/4) + x) + 44*a*x)/(a^2*c^2*x^8 + 2*a^3*c*x^4 + a^4)

________________________________________________________________________________________

giac [A]  time = 0.36, size = 204, normalized size = 0.93 \[ \frac {21 \, \sqrt {2} \left (a c^{3}\right )^{\frac {1}{4}} \arctan \left (\frac {\sqrt {2} {\left (2 \, x + \sqrt {2} \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{c}\right )^{\frac {1}{4}}}\right )}{128 \, a^{3} c} + \frac {21 \, \sqrt {2} \left (a c^{3}\right )^{\frac {1}{4}} \arctan \left (\frac {\sqrt {2} {\left (2 \, x - \sqrt {2} \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{c}\right )^{\frac {1}{4}}}\right )}{128 \, a^{3} c} + \frac {21 \, \sqrt {2} \left (a c^{3}\right )^{\frac {1}{4}} \log \left (x^{2} + \sqrt {2} x \left (\frac {a}{c}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{c}}\right )}{256 \, a^{3} c} - \frac {21 \, \sqrt {2} \left (a c^{3}\right )^{\frac {1}{4}} \log \left (x^{2} - \sqrt {2} x \left (\frac {a}{c}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{c}}\right )}{256 \, a^{3} c} + \frac {7 \, c x^{5} + 11 \, a x}{32 \, {\left (c x^{4} + a\right )}^{2} a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x^4+a)^3,x, algorithm="giac")

[Out]

21/128*sqrt(2)*(a*c^3)^(1/4)*arctan(1/2*sqrt(2)*(2*x + sqrt(2)*(a/c)^(1/4))/(a/c)^(1/4))/(a^3*c) + 21/128*sqrt
(2)*(a*c^3)^(1/4)*arctan(1/2*sqrt(2)*(2*x - sqrt(2)*(a/c)^(1/4))/(a/c)^(1/4))/(a^3*c) + 21/256*sqrt(2)*(a*c^3)
^(1/4)*log(x^2 + sqrt(2)*x*(a/c)^(1/4) + sqrt(a/c))/(a^3*c) - 21/256*sqrt(2)*(a*c^3)^(1/4)*log(x^2 - sqrt(2)*x
*(a/c)^(1/4) + sqrt(a/c))/(a^3*c) + 1/32*(7*c*x^5 + 11*a*x)/((c*x^4 + a)^2*a^2)

________________________________________________________________________________________

maple [A]  time = 0.00, size = 158, normalized size = 0.72 \[ \frac {x}{8 \left (c \,x^{4}+a \right )^{2} a}+\frac {7 x}{32 \left (c \,x^{4}+a \right ) a^{2}}+\frac {21 \left (\frac {a}{c}\right )^{\frac {1}{4}} \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}-1\right )}{128 a^{3}}+\frac {21 \left (\frac {a}{c}\right )^{\frac {1}{4}} \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}+1\right )}{128 a^{3}}+\frac {21 \left (\frac {a}{c}\right )^{\frac {1}{4}} \sqrt {2}\, \ln \left (\frac {x^{2}+\left (\frac {a}{c}\right )^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {\frac {a}{c}}}{x^{2}-\left (\frac {a}{c}\right )^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {\frac {a}{c}}}\right )}{256 a^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(c*x^4+a)^3,x)

[Out]

1/8*x/a/(c*x^4+a)^2+7/32*x/a^2/(c*x^4+a)+21/256/a^3*(a/c)^(1/4)*2^(1/2)*ln((x^2+(a/c)^(1/4)*2^(1/2)*x+(a/c)^(1
/2))/(x^2-(a/c)^(1/4)*2^(1/2)*x+(a/c)^(1/2)))+21/128/a^3*(a/c)^(1/4)*2^(1/2)*arctan(2^(1/2)/(a/c)^(1/4)*x+1)+2
1/128/a^3*(a/c)^(1/4)*2^(1/2)*arctan(2^(1/2)/(a/c)^(1/4)*x-1)

________________________________________________________________________________________

maxima [A]  time = 2.70, size = 212, normalized size = 0.97 \[ \frac {7 \, c x^{5} + 11 \, a x}{32 \, {\left (a^{2} c^{2} x^{8} + 2 \, a^{3} c x^{4} + a^{4}\right )}} + \frac {21 \, {\left (\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {c} x + \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {c}}}\right )}{\sqrt {a} \sqrt {\sqrt {a} \sqrt {c}}} + \frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {c} x - \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {c}}}\right )}{\sqrt {a} \sqrt {\sqrt {a} \sqrt {c}}} + \frac {\sqrt {2} \log \left (\sqrt {c} x^{2} + \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}} x + \sqrt {a}\right )}{a^{\frac {3}{4}} c^{\frac {1}{4}}} - \frac {\sqrt {2} \log \left (\sqrt {c} x^{2} - \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}} x + \sqrt {a}\right )}{a^{\frac {3}{4}} c^{\frac {1}{4}}}\right )}}{256 \, a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x^4+a)^3,x, algorithm="maxima")

[Out]

1/32*(7*c*x^5 + 11*a*x)/(a^2*c^2*x^8 + 2*a^3*c*x^4 + a^4) + 21/256*(2*sqrt(2)*arctan(1/2*sqrt(2)*(2*sqrt(c)*x
+ sqrt(2)*a^(1/4)*c^(1/4))/sqrt(sqrt(a)*sqrt(c)))/(sqrt(a)*sqrt(sqrt(a)*sqrt(c))) + 2*sqrt(2)*arctan(1/2*sqrt(
2)*(2*sqrt(c)*x - sqrt(2)*a^(1/4)*c^(1/4))/sqrt(sqrt(a)*sqrt(c)))/(sqrt(a)*sqrt(sqrt(a)*sqrt(c))) + sqrt(2)*lo
g(sqrt(c)*x^2 + sqrt(2)*a^(1/4)*c^(1/4)*x + sqrt(a))/(a^(3/4)*c^(1/4)) - sqrt(2)*log(sqrt(c)*x^2 - sqrt(2)*a^(
1/4)*c^(1/4)*x + sqrt(a))/(a^(3/4)*c^(1/4)))/a^2

________________________________________________________________________________________

mupad [B]  time = 0.10, size = 80, normalized size = 0.37 \[ \frac {\frac {11\,x}{32\,a}+\frac {7\,c\,x^5}{32\,a^2}}{a^2+2\,a\,c\,x^4+c^2\,x^8}-\frac {21\,\mathrm {atan}\left (\frac {c^{1/4}\,x}{{\left (-a\right )}^{1/4}}\right )}{64\,{\left (-a\right )}^{11/4}\,c^{1/4}}-\frac {21\,\mathrm {atanh}\left (\frac {c^{1/4}\,x}{{\left (-a\right )}^{1/4}}\right )}{64\,{\left (-a\right )}^{11/4}\,c^{1/4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a + c*x^4)^3,x)

[Out]

((11*x)/(32*a) + (7*c*x^5)/(32*a^2))/(a^2 + c^2*x^8 + 2*a*c*x^4) - (21*atan((c^(1/4)*x)/(-a)^(1/4)))/(64*(-a)^
(11/4)*c^(1/4)) - (21*atanh((c^(1/4)*x)/(-a)^(1/4)))/(64*(-a)^(11/4)*c^(1/4))

________________________________________________________________________________________

sympy [A]  time = 0.46, size = 63, normalized size = 0.29 \[ \frac {11 a x + 7 c x^{5}}{32 a^{4} + 64 a^{3} c x^{4} + 32 a^{2} c^{2} x^{8}} + \operatorname {RootSum} {\left (268435456 t^{4} a^{11} c + 194481, \left (t \mapsto t \log {\left (\frac {128 t a^{3}}{21} + x \right )} \right )\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x**4+a)**3,x)

[Out]

(11*a*x + 7*c*x**5)/(32*a**4 + 64*a**3*c*x**4 + 32*a**2*c**2*x**8) + RootSum(268435456*_t**4*a**11*c + 194481,
 Lambda(_t, _t*log(128*_t*a**3/21 + x)))

________________________________________________________________________________________