3.396 \(\int \frac {d+e x}{a+c x^4} \, dx\)

Optimal. Leaf size=219 \[ -\frac {d \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{4 \sqrt {2} a^{3/4} \sqrt [4]{c}}+\frac {d \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{4 \sqrt {2} a^{3/4} \sqrt [4]{c}}-\frac {d \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} a^{3/4} \sqrt [4]{c}}+\frac {d \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{2 \sqrt {2} a^{3/4} \sqrt [4]{c}}+\frac {e \tan ^{-1}\left (\frac {\sqrt {c} x^2}{\sqrt {a}}\right )}{2 \sqrt {a} \sqrt {c}} \]

[Out]

1/4*d*arctan(-1+c^(1/4)*x*2^(1/2)/a^(1/4))/a^(3/4)/c^(1/4)*2^(1/2)+1/4*d*arctan(1+c^(1/4)*x*2^(1/2)/a^(1/4))/a
^(3/4)/c^(1/4)*2^(1/2)-1/8*d*ln(-a^(1/4)*c^(1/4)*x*2^(1/2)+a^(1/2)+x^2*c^(1/2))/a^(3/4)/c^(1/4)*2^(1/2)+1/8*d*
ln(a^(1/4)*c^(1/4)*x*2^(1/2)+a^(1/2)+x^2*c^(1/2))/a^(3/4)/c^(1/4)*2^(1/2)+1/2*e*arctan(x^2*c^(1/2)/a^(1/2))/a^
(1/2)/c^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.17, antiderivative size = 219, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 9, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.600, Rules used = {1876, 211, 1165, 628, 1162, 617, 204, 275, 205} \[ -\frac {d \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{4 \sqrt {2} a^{3/4} \sqrt [4]{c}}+\frac {d \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{4 \sqrt {2} a^{3/4} \sqrt [4]{c}}-\frac {d \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} a^{3/4} \sqrt [4]{c}}+\frac {d \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{2 \sqrt {2} a^{3/4} \sqrt [4]{c}}+\frac {e \tan ^{-1}\left (\frac {\sqrt {c} x^2}{\sqrt {a}}\right )}{2 \sqrt {a} \sqrt {c}} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x)/(a + c*x^4),x]

[Out]

(e*ArcTan[(Sqrt[c]*x^2)/Sqrt[a]])/(2*Sqrt[a]*Sqrt[c]) - (d*ArcTan[1 - (Sqrt[2]*c^(1/4)*x)/a^(1/4)])/(2*Sqrt[2]
*a^(3/4)*c^(1/4)) + (d*ArcTan[1 + (Sqrt[2]*c^(1/4)*x)/a^(1/4)])/(2*Sqrt[2]*a^(3/4)*c^(1/4)) - (d*Log[Sqrt[a] -
 Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/(4*Sqrt[2]*a^(3/4)*c^(1/4)) + (d*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*c^(1
/4)*x + Sqrt[c]*x^2])/(4*Sqrt[2]*a^(3/4)*c^(1/4))

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 211

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 275

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 1876

Int[(Pq_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = Sum[(x^ii*(Coeff[Pq, x, ii] + Coeff[Pq, x, n/2 + ii
]*x^(n/2)))/(a + b*x^n), {ii, 0, n/2 - 1}]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && IGtQ
[n/2, 0] && Expon[Pq, x] < n

Rubi steps

\begin {align*} \int \frac {d+e x}{a+c x^4} \, dx &=\int \left (\frac {d}{a+c x^4}+\frac {e x}{a+c x^4}\right ) \, dx\\ &=d \int \frac {1}{a+c x^4} \, dx+e \int \frac {x}{a+c x^4} \, dx\\ &=\frac {d \int \frac {\sqrt {a}-\sqrt {c} x^2}{a+c x^4} \, dx}{2 \sqrt {a}}+\frac {d \int \frac {\sqrt {a}+\sqrt {c} x^2}{a+c x^4} \, dx}{2 \sqrt {a}}+\frac {1}{2} e \operatorname {Subst}\left (\int \frac {1}{a+c x^2} \, dx,x,x^2\right )\\ &=\frac {e \tan ^{-1}\left (\frac {\sqrt {c} x^2}{\sqrt {a}}\right )}{2 \sqrt {a} \sqrt {c}}+\frac {d \int \frac {1}{\frac {\sqrt {a}}{\sqrt {c}}-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+x^2} \, dx}{4 \sqrt {a} \sqrt {c}}+\frac {d \int \frac {1}{\frac {\sqrt {a}}{\sqrt {c}}+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+x^2} \, dx}{4 \sqrt {a} \sqrt {c}}-\frac {d \int \frac {\frac {\sqrt {2} \sqrt [4]{a}}{\sqrt [4]{c}}+2 x}{-\frac {\sqrt {a}}{\sqrt {c}}-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}-x^2} \, dx}{4 \sqrt {2} a^{3/4} \sqrt [4]{c}}-\frac {d \int \frac {\frac {\sqrt {2} \sqrt [4]{a}}{\sqrt [4]{c}}-2 x}{-\frac {\sqrt {a}}{\sqrt {c}}+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}-x^2} \, dx}{4 \sqrt {2} a^{3/4} \sqrt [4]{c}}\\ &=\frac {e \tan ^{-1}\left (\frac {\sqrt {c} x^2}{\sqrt {a}}\right )}{2 \sqrt {a} \sqrt {c}}-\frac {d \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{4 \sqrt {2} a^{3/4} \sqrt [4]{c}}+\frac {d \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{4 \sqrt {2} a^{3/4} \sqrt [4]{c}}+\frac {d \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} a^{3/4} \sqrt [4]{c}}-\frac {d \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} a^{3/4} \sqrt [4]{c}}\\ &=\frac {e \tan ^{-1}\left (\frac {\sqrt {c} x^2}{\sqrt {a}}\right )}{2 \sqrt {a} \sqrt {c}}-\frac {d \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} a^{3/4} \sqrt [4]{c}}+\frac {d \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} a^{3/4} \sqrt [4]{c}}-\frac {d \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{4 \sqrt {2} a^{3/4} \sqrt [4]{c}}+\frac {d \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{4 \sqrt {2} a^{3/4} \sqrt [4]{c}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.06, size = 184, normalized size = 0.84 \[ \frac {-2 \left (2 \sqrt [4]{a} e+\sqrt {2} \sqrt [4]{c} d\right ) \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )+2 \left (\sqrt {2} \sqrt [4]{c} d-2 \sqrt [4]{a} e\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )+\sqrt {2} \sqrt [4]{c} d \left (\log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )-\log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )\right )}{8 a^{3/4} \sqrt {c}} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)/(a + c*x^4),x]

[Out]

(-2*(Sqrt[2]*c^(1/4)*d + 2*a^(1/4)*e)*ArcTan[1 - (Sqrt[2]*c^(1/4)*x)/a^(1/4)] + 2*(Sqrt[2]*c^(1/4)*d - 2*a^(1/
4)*e)*ArcTan[1 + (Sqrt[2]*c^(1/4)*x)/a^(1/4)] + Sqrt[2]*c^(1/4)*d*(-Log[Sqrt[a] - Sqrt[2]*a^(1/4)*c^(1/4)*x +
Sqrt[c]*x^2] + Log[Sqrt[a] + Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2]))/(8*a^(3/4)*Sqrt[c])

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(c*x^4+a),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [A]  time = 0.32, size = 215, normalized size = 0.98 \[ \frac {\sqrt {2} \left (a c^{3}\right )^{\frac {1}{4}} d \log \left (x^{2} + \sqrt {2} x \left (\frac {a}{c}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{c}}\right )}{8 \, a c} - \frac {\sqrt {2} \left (a c^{3}\right )^{\frac {1}{4}} d \log \left (x^{2} - \sqrt {2} x \left (\frac {a}{c}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{c}}\right )}{8 \, a c} - \frac {\sqrt {2} {\left (\sqrt {2} \sqrt {a c} c e - \left (a c^{3}\right )^{\frac {1}{4}} c d\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, x + \sqrt {2} \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{c}\right )^{\frac {1}{4}}}\right )}{4 \, a c^{2}} - \frac {\sqrt {2} {\left (\sqrt {2} \sqrt {a c} c e - \left (a c^{3}\right )^{\frac {1}{4}} c d\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, x - \sqrt {2} \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{c}\right )^{\frac {1}{4}}}\right )}{4 \, a c^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(c*x^4+a),x, algorithm="giac")

[Out]

1/8*sqrt(2)*(a*c^3)^(1/4)*d*log(x^2 + sqrt(2)*x*(a/c)^(1/4) + sqrt(a/c))/(a*c) - 1/8*sqrt(2)*(a*c^3)^(1/4)*d*l
og(x^2 - sqrt(2)*x*(a/c)^(1/4) + sqrt(a/c))/(a*c) - 1/4*sqrt(2)*(sqrt(2)*sqrt(a*c)*c*e - (a*c^3)^(1/4)*c*d)*ar
ctan(1/2*sqrt(2)*(2*x + sqrt(2)*(a/c)^(1/4))/(a/c)^(1/4))/(a*c^2) - 1/4*sqrt(2)*(sqrt(2)*sqrt(a*c)*c*e - (a*c^
3)^(1/4)*c*d)*arctan(1/2*sqrt(2)*(2*x - sqrt(2)*(a/c)^(1/4))/(a/c)^(1/4))/(a*c^2)

________________________________________________________________________________________

maple [A]  time = 0.00, size = 151, normalized size = 0.69 \[ \frac {e \arctan \left (\sqrt {\frac {c}{a}}\, x^{2}\right )}{2 \sqrt {a c}}+\frac {\left (\frac {a}{c}\right )^{\frac {1}{4}} \sqrt {2}\, d \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}-1\right )}{4 a}+\frac {\left (\frac {a}{c}\right )^{\frac {1}{4}} \sqrt {2}\, d \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}+1\right )}{4 a}+\frac {\left (\frac {a}{c}\right )^{\frac {1}{4}} \sqrt {2}\, d \ln \left (\frac {x^{2}+\left (\frac {a}{c}\right )^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {\frac {a}{c}}}{x^{2}-\left (\frac {a}{c}\right )^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {\frac {a}{c}}}\right )}{8 a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)/(c*x^4+a),x)

[Out]

1/8*d*(a/c)^(1/4)/a*2^(1/2)*ln((x^2+(a/c)^(1/4)*2^(1/2)*x+(a/c)^(1/2))/(x^2-(a/c)^(1/4)*2^(1/2)*x+(a/c)^(1/2))
)+1/4*d*(a/c)^(1/4)/a*2^(1/2)*arctan(2^(1/2)/(a/c)^(1/4)*x+1)+1/4*d*(a/c)^(1/4)/a*2^(1/2)*arctan(2^(1/2)/(a/c)
^(1/4)*x-1)+1/2*e/(a*c)^(1/2)*arctan((1/a*c)^(1/2)*x^2)

________________________________________________________________________________________

maxima [A]  time = 2.67, size = 207, normalized size = 0.95 \[ \frac {\sqrt {2} d \log \left (\sqrt {c} x^{2} + \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}} x + \sqrt {a}\right )}{8 \, a^{\frac {3}{4}} c^{\frac {1}{4}}} - \frac {\sqrt {2} d \log \left (\sqrt {c} x^{2} - \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}} x + \sqrt {a}\right )}{8 \, a^{\frac {3}{4}} c^{\frac {1}{4}}} + \frac {{\left (\sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}} d - 2 \, \sqrt {a} e\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {c} x + \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {c}}}\right )}{4 \, a^{\frac {3}{4}} \sqrt {\sqrt {a} \sqrt {c}} c^{\frac {1}{4}}} + \frac {{\left (\sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}} d + 2 \, \sqrt {a} e\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {c} x - \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {c}}}\right )}{4 \, a^{\frac {3}{4}} \sqrt {\sqrt {a} \sqrt {c}} c^{\frac {1}{4}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(c*x^4+a),x, algorithm="maxima")

[Out]

1/8*sqrt(2)*d*log(sqrt(c)*x^2 + sqrt(2)*a^(1/4)*c^(1/4)*x + sqrt(a))/(a^(3/4)*c^(1/4)) - 1/8*sqrt(2)*d*log(sqr
t(c)*x^2 - sqrt(2)*a^(1/4)*c^(1/4)*x + sqrt(a))/(a^(3/4)*c^(1/4)) + 1/4*(sqrt(2)*a^(1/4)*c^(1/4)*d - 2*sqrt(a)
*e)*arctan(1/2*sqrt(2)*(2*sqrt(c)*x + sqrt(2)*a^(1/4)*c^(1/4))/sqrt(sqrt(a)*sqrt(c)))/(a^(3/4)*sqrt(sqrt(a)*sq
rt(c))*c^(1/4)) + 1/4*(sqrt(2)*a^(1/4)*c^(1/4)*d + 2*sqrt(a)*e)*arctan(1/2*sqrt(2)*(2*sqrt(c)*x - sqrt(2)*a^(1
/4)*c^(1/4))/sqrt(sqrt(a)*sqrt(c)))/(a^(3/4)*sqrt(sqrt(a)*sqrt(c))*c^(1/4))

________________________________________________________________________________________

mupad [B]  time = 2.32, size = 160, normalized size = 0.73 \[ \left \{\begin {array}{cl} -\frac {2\,d+3\,e\,x}{6\,c\,x^3} & \text {\ if\ \ }a=0\\ \frac {\mathrm {atan}\left (\frac {\sqrt {2}\,c^{1/4}\,x}{a^{1/4}}-1\right )\,\left (2\,a^{1/4}\,e+\sqrt {2}\,c^{1/4}\,d\right )}{4\,a^{3/4}\,\sqrt {c}}-\frac {\mathrm {atan}\left (\frac {\sqrt {2}\,c^{1/4}\,x}{a^{1/4}}+1\right )\,\left (4\,a^{1/4}\,e-2\,\sqrt {2}\,c^{1/4}\,d\right )}{8\,a^{3/4}\,\sqrt {c}}+\frac {\sqrt {2}\,d\,\ln \left (\frac {\sqrt {a}+\sqrt {c}\,x^2+\sqrt {2}\,a^{1/4}\,c^{1/4}\,x}{\sqrt {a}+\sqrt {c}\,x^2-\sqrt {2}\,a^{1/4}\,c^{1/4}\,x}\right )}{8\,a^{3/4}\,c^{1/4}} & \text {\ if\ \ }a\neq 0 \end {array}\right . \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x)/(a + c*x^4),x)

[Out]

piecewise(a == 0, -(2*d + 3*e*x)/(6*c*x^3), a ~= 0, (atan((2^(1/2)*c^(1/4)*x)/a^(1/4) - 1)*(2*a^(1/4)*e + 2^(1
/2)*c^(1/4)*d))/(4*a^(3/4)*c^(1/2)) - (atan((2^(1/2)*c^(1/4)*x)/a^(1/4) + 1)*(4*a^(1/4)*e - 2*2^(1/2)*c^(1/4)*
d))/(8*a^(3/4)*c^(1/2)) + (2^(1/2)*d*log((a^(1/2) + c^(1/2)*x^2 + 2^(1/2)*a^(1/4)*c^(1/4)*x)/(a^(1/2) + c^(1/2
)*x^2 - 2^(1/2)*a^(1/4)*c^(1/4)*x)))/(8*a^(3/4)*c^(1/4)))

________________________________________________________________________________________

sympy [A]  time = 0.82, size = 124, normalized size = 0.57 \[ \operatorname {RootSum} {\left (256 t^{4} a^{3} c^{2} + 32 t^{2} a^{2} c e^{2} - 16 t a c d^{2} e + a e^{4} + c d^{4}, \left (t \mapsto t \log {\left (x + \frac {- 128 t^{3} a^{3} c e^{2} - 16 t^{2} a^{2} c d^{2} e - 8 t a^{2} e^{4} - 4 t a c d^{4} + 5 a d^{2} e^{3}}{4 a d e^{4} - c d^{5}} \right )} \right )\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(c*x**4+a),x)

[Out]

RootSum(256*_t**4*a**3*c**2 + 32*_t**2*a**2*c*e**2 - 16*_t*a*c*d**2*e + a*e**4 + c*d**4, Lambda(_t, _t*log(x +
 (-128*_t**3*a**3*c*e**2 - 16*_t**2*a**2*c*d**2*e - 8*_t*a**2*e**4 - 4*_t*a*c*d**4 + 5*a*d**2*e**3)/(4*a*d*e**
4 - c*d**5))))

________________________________________________________________________________________