3.258 \(\int \frac {1-3 x^4}{(-2+x) (1+x^2)^2} \, dx\)

Optimal. Leaf size=43 \[ -\frac {1-2 x}{5 \left (x^2+1\right )}-\frac {14}{25} \log \left (x^2+1\right )-\frac {47}{25} \log (2-x)-\frac {46}{25} \tan ^{-1}(x) \]

[Out]

1/5*(-1+2*x)/(x^2+1)-46/25*arctan(x)-47/25*ln(2-x)-14/25*ln(x^2+1)

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 43, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {1647, 1629, 635, 203, 260} \[ -\frac {1-2 x}{5 \left (x^2+1\right )}-\frac {14}{25} \log \left (x^2+1\right )-\frac {47}{25} \log (2-x)-\frac {46}{25} \tan ^{-1}(x) \]

Antiderivative was successfully verified.

[In]

Int[(1 - 3*x^4)/((-2 + x)*(1 + x^2)^2),x]

[Out]

-(1 - 2*x)/(5*(1 + x^2)) - (46*ArcTan[x])/25 - (47*Log[2 - x])/25 - (14*Log[1 + x^2])/25

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 260

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rule 635

Int[((d_) + (e_.)*(x_))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Dist[d, Int[1/(a + c*x^2), x], x] + Dist[e, Int[x/
(a + c*x^2), x], x] /; FreeQ[{a, c, d, e}, x] &&  !NiceSqrtQ[-(a*c)]

Rule 1629

Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(d + e*x)^m*
Pq*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, m}, x] && PolyQ[Pq, x] && IGtQ[p, -2]

Rule 1647

Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[(d +
 e*x)^m*Pq, a + c*x^2, x], f = Coeff[PolynomialRemainder[(d + e*x)^m*Pq, a + c*x^2, x], x, 0], g = Coeff[Polyn
omialRemainder[(d + e*x)^m*Pq, a + c*x^2, x], x, 1]}, Simp[((a*g - c*f*x)*(a + c*x^2)^(p + 1))/(2*a*c*(p + 1))
, x] + Dist[1/(2*a*c*(p + 1)), Int[(d + e*x)^m*(a + c*x^2)^(p + 1)*ExpandToSum[(2*a*c*(p + 1)*Q)/(d + e*x)^m +
 (c*f*(2*p + 3))/(d + e*x)^m, x], x], x]] /; FreeQ[{a, c, d, e}, x] && PolyQ[Pq, x] && NeQ[c*d^2 + a*e^2, 0] &
& LtQ[p, -1] && ILtQ[m, 0]

Rubi steps

\begin {align*} \int \frac {1-3 x^4}{(-2+x) \left (1+x^2\right )^2} \, dx &=-\frac {1-2 x}{5 \left (1+x^2\right )}-\frac {1}{2} \int \frac {-\frac {18}{5}-\frac {4 x}{5}+6 x^2}{(-2+x) \left (1+x^2\right )} \, dx\\ &=-\frac {1-2 x}{5 \left (1+x^2\right )}-\frac {1}{2} \int \left (\frac {94}{25 (-2+x)}+\frac {4 (23+14 x)}{25 \left (1+x^2\right )}\right ) \, dx\\ &=-\frac {1-2 x}{5 \left (1+x^2\right )}-\frac {47}{25} \log (2-x)-\frac {2}{25} \int \frac {23+14 x}{1+x^2} \, dx\\ &=-\frac {1-2 x}{5 \left (1+x^2\right )}-\frac {47}{25} \log (2-x)-\frac {28}{25} \int \frac {x}{1+x^2} \, dx-\frac {46}{25} \int \frac {1}{1+x^2} \, dx\\ &=-\frac {1-2 x}{5 \left (1+x^2\right )}-\frac {46}{25} \tan ^{-1}(x)-\frac {47}{25} \log (2-x)-\frac {14}{25} \log \left (1+x^2\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 57, normalized size = 1.33 \[ \frac {2 (x-2)+3}{5 \left ((x-2)^2+4 (x-2)+5\right )}-\frac {14}{25} \log \left ((x-2)^2+4 (x-2)+5\right )-\frac {47}{25} \log (x-2)-\frac {46}{25} \tan ^{-1}(x) \]

Antiderivative was successfully verified.

[In]

Integrate[(1 - 3*x^4)/((-2 + x)*(1 + x^2)^2),x]

[Out]

(3 + 2*(-2 + x))/(5*(5 + 4*(-2 + x) + (-2 + x)^2)) - (46*ArcTan[x])/25 - (14*Log[5 + 4*(-2 + x) + (-2 + x)^2])
/25 - (47*Log[-2 + x])/25

________________________________________________________________________________________

fricas [A]  time = 0.81, size = 47, normalized size = 1.09 \[ -\frac {46 \, {\left (x^{2} + 1\right )} \arctan \relax (x) + 14 \, {\left (x^{2} + 1\right )} \log \left (x^{2} + 1\right ) + 47 \, {\left (x^{2} + 1\right )} \log \left (x - 2\right ) - 10 \, x + 5}{25 \, {\left (x^{2} + 1\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-3*x^4+1)/(-2+x)/(x^2+1)^2,x, algorithm="fricas")

[Out]

-1/25*(46*(x^2 + 1)*arctan(x) + 14*(x^2 + 1)*log(x^2 + 1) + 47*(x^2 + 1)*log(x - 2) - 10*x + 5)/(x^2 + 1)

________________________________________________________________________________________

giac [A]  time = 0.25, size = 34, normalized size = 0.79 \[ \frac {2 \, x - 1}{5 \, {\left (x^{2} + 1\right )}} - \frac {46}{25} \, \arctan \relax (x) - \frac {14}{25} \, \log \left (x^{2} + 1\right ) - \frac {47}{25} \, \log \left ({\left | x - 2 \right |}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-3*x^4+1)/(-2+x)/(x^2+1)^2,x, algorithm="giac")

[Out]

1/5*(2*x - 1)/(x^2 + 1) - 46/25*arctan(x) - 14/25*log(x^2 + 1) - 47/25*log(abs(x - 2))

________________________________________________________________________________________

maple [A]  time = 0.01, size = 34, normalized size = 0.79 \[ -\frac {46 \arctan \relax (x )}{25}-\frac {47 \ln \left (x -2\right )}{25}-\frac {14 \ln \left (x^{2}+1\right )}{25}-\frac {2 \left (-5 x +\frac {5}{2}\right )}{25 \left (x^{2}+1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-3*x^4+1)/(-2+x)/(x^2+1)^2,x)

[Out]

-2/25*(-5*x+5/2)/(x^2+1)-14/25*ln(x^2+1)-46/25*arctan(x)-47/25*ln(-2+x)

________________________________________________________________________________________

maxima [A]  time = 2.10, size = 33, normalized size = 0.77 \[ \frac {2 \, x - 1}{5 \, {\left (x^{2} + 1\right )}} - \frac {46}{25} \, \arctan \relax (x) - \frac {14}{25} \, \log \left (x^{2} + 1\right ) - \frac {47}{25} \, \log \left (x - 2\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-3*x^4+1)/(-2+x)/(x^2+1)^2,x, algorithm="maxima")

[Out]

1/5*(2*x - 1)/(x^2 + 1) - 46/25*arctan(x) - 14/25*log(x^2 + 1) - 47/25*log(x - 2)

________________________________________________________________________________________

mupad [B]  time = 0.05, size = 38, normalized size = 0.88 \[ \frac {\frac {2\,x}{5}-\frac {1}{5}}{x^2+1}-\frac {47\,\ln \left (x-2\right )}{25}+\ln \left (x-\mathrm {i}\right )\,\left (-\frac {14}{25}+\frac {23}{25}{}\mathrm {i}\right )+\ln \left (x+1{}\mathrm {i}\right )\,\left (-\frac {14}{25}-\frac {23}{25}{}\mathrm {i}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(3*x^4 - 1)/((x^2 + 1)^2*(x - 2)),x)

[Out]

((2*x)/5 - 1/5)/(x^2 + 1) - log(x - 1i)*(14/25 - 23i/25) - log(x + 1i)*(14/25 + 23i/25) - (47*log(x - 2))/25

________________________________________________________________________________________

sympy [A]  time = 0.17, size = 37, normalized size = 0.86 \[ - \frac {1 - 2 x}{5 x^{2} + 5} - \frac {47 \log {\left (x - 2 \right )}}{25} - \frac {14 \log {\left (x^{2} + 1 \right )}}{25} - \frac {46 \operatorname {atan}{\relax (x )}}{25} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-3*x**4+1)/(-2+x)/(x**2+1)**2,x)

[Out]

-(1 - 2*x)/(5*x**2 + 5) - 47*log(x - 2)/25 - 14*log(x**2 + 1)/25 - 46*atan(x)/25

________________________________________________________________________________________