3.245 \(\int \frac {x (5+x+3 x^2+2 x^3)}{2+x+3 x^2+x^3+2 x^4} \, dx\)

Optimal. Leaf size=72 \[ \frac {1}{3} \log \left (x^2+x+1\right )+\frac {1}{6} \log \left (2 x^2-x+2\right )+x-\frac {1}{3} \sqrt {\frac {5}{3}} \tan ^{-1}\left (\frac {1-4 x}{\sqrt {15}}\right )-\frac {10 \tan ^{-1}\left (\frac {2 x+1}{\sqrt {3}}\right )}{3 \sqrt {3}} \]

[Out]

x+1/3*ln(x^2+x+1)+1/6*ln(2*x^2-x+2)-1/9*arctan(1/15*(1-4*x)*15^(1/2))*15^(1/2)-10/9*arctan(1/3*(1+2*x)*3^(1/2)
)*3^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.09, antiderivative size = 72, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 5, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.152, Rules used = {2075, 634, 618, 204, 628} \[ \frac {1}{3} \log \left (x^2+x+1\right )+\frac {1}{6} \log \left (2 x^2-x+2\right )+x-\frac {1}{3} \sqrt {\frac {5}{3}} \tan ^{-1}\left (\frac {1-4 x}{\sqrt {15}}\right )-\frac {10 \tan ^{-1}\left (\frac {2 x+1}{\sqrt {3}}\right )}{3 \sqrt {3}} \]

Antiderivative was successfully verified.

[In]

Int[(x*(5 + x + 3*x^2 + 2*x^3))/(2 + x + 3*x^2 + x^3 + 2*x^4),x]

[Out]

x - (Sqrt[5/3]*ArcTan[(1 - 4*x)/Sqrt[15]])/3 - (10*ArcTan[(1 + 2*x)/Sqrt[3]])/(3*Sqrt[3]) + Log[1 + x + x^2]/3
 + Log[2 - x + 2*x^2]/6

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 2075

Int[(P_)^(p_)*(Qm_), x_Symbol] :> With[{PP = Factor[P]}, Int[ExpandIntegrand[PP^p*Qm, x], x] /; QuadraticProdu
ctQ[PP, x]] /; PolyQ[Qm, x] && PolyQ[P, x] && ILtQ[p, 0]

Rubi steps

\begin {align*} \int \frac {x \left (5+x+3 x^2+2 x^3\right )}{2+x+3 x^2+x^3+2 x^4} \, dx &=\int \left (1+\frac {2 (-2+x)}{3 \left (1+x+x^2\right )}+\frac {2 (1+x)}{3 \left (2-x+2 x^2\right )}\right ) \, dx\\ &=x+\frac {2}{3} \int \frac {-2+x}{1+x+x^2} \, dx+\frac {2}{3} \int \frac {1+x}{2-x+2 x^2} \, dx\\ &=x+\frac {1}{6} \int \frac {-1+4 x}{2-x+2 x^2} \, dx+\frac {1}{3} \int \frac {1+2 x}{1+x+x^2} \, dx+\frac {5}{6} \int \frac {1}{2-x+2 x^2} \, dx-\frac {5}{3} \int \frac {1}{1+x+x^2} \, dx\\ &=x+\frac {1}{3} \log \left (1+x+x^2\right )+\frac {1}{6} \log \left (2-x+2 x^2\right )-\frac {5}{3} \operatorname {Subst}\left (\int \frac {1}{-15-x^2} \, dx,x,-1+4 x\right )+\frac {10}{3} \operatorname {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,1+2 x\right )\\ &=x-\frac {1}{3} \sqrt {\frac {5}{3}} \tan ^{-1}\left (\frac {1-4 x}{\sqrt {15}}\right )-\frac {10 \tan ^{-1}\left (\frac {1+2 x}{\sqrt {3}}\right )}{3 \sqrt {3}}+\frac {1}{3} \log \left (1+x+x^2\right )+\frac {1}{6} \log \left (2-x+2 x^2\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 69, normalized size = 0.96 \[ \frac {1}{18} \left (3 \left (2 \log \left (x^2+x+1\right )+\log \left (2 x^2-x+2\right )+6 x\right )-20 \sqrt {3} \tan ^{-1}\left (\frac {2 x+1}{\sqrt {3}}\right )+2 \sqrt {15} \tan ^{-1}\left (\frac {4 x-1}{\sqrt {15}}\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(x*(5 + x + 3*x^2 + 2*x^3))/(2 + x + 3*x^2 + x^3 + 2*x^4),x]

[Out]

(-20*Sqrt[3]*ArcTan[(1 + 2*x)/Sqrt[3]] + 2*Sqrt[15]*ArcTan[(-1 + 4*x)/Sqrt[15]] + 3*(6*x + 2*Log[1 + x + x^2]
+ Log[2 - x + 2*x^2]))/18

________________________________________________________________________________________

fricas [A]  time = 1.04, size = 62, normalized size = 0.86 \[ \frac {1}{9} \, \sqrt {5} \sqrt {3} \arctan \left (\frac {1}{15} \, \sqrt {5} \sqrt {3} {\left (4 \, x - 1\right )}\right ) - \frac {10}{9} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x + 1\right )}\right ) + x + \frac {1}{6} \, \log \left (2 \, x^{2} - x + 2\right ) + \frac {1}{3} \, \log \left (x^{2} + x + 1\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(2*x^3+3*x^2+x+5)/(2*x^4+x^3+3*x^2+x+2),x, algorithm="fricas")

[Out]

1/9*sqrt(5)*sqrt(3)*arctan(1/15*sqrt(5)*sqrt(3)*(4*x - 1)) - 10/9*sqrt(3)*arctan(1/3*sqrt(3)*(2*x + 1)) + x +
1/6*log(2*x^2 - x + 2) + 1/3*log(x^2 + x + 1)

________________________________________________________________________________________

giac [A]  time = 0.31, size = 56, normalized size = 0.78 \[ \frac {1}{9} \, \sqrt {15} \arctan \left (\frac {1}{15} \, \sqrt {15} {\left (4 \, x - 1\right )}\right ) - \frac {10}{9} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x + 1\right )}\right ) + x + \frac {1}{6} \, \log \left (2 \, x^{2} - x + 2\right ) + \frac {1}{3} \, \log \left (x^{2} + x + 1\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(2*x^3+3*x^2+x+5)/(2*x^4+x^3+3*x^2+x+2),x, algorithm="giac")

[Out]

1/9*sqrt(15)*arctan(1/15*sqrt(15)*(4*x - 1)) - 10/9*sqrt(3)*arctan(1/3*sqrt(3)*(2*x + 1)) + x + 1/6*log(2*x^2
- x + 2) + 1/3*log(x^2 + x + 1)

________________________________________________________________________________________

maple [A]  time = 0.00, size = 57, normalized size = 0.79 \[ x +\frac {\sqrt {15}\, \arctan \left (\frac {\left (4 x -1\right ) \sqrt {15}}{15}\right )}{9}-\frac {10 \sqrt {3}\, \arctan \left (\frac {\left (2 x +1\right ) \sqrt {3}}{3}\right )}{9}+\frac {\ln \left (x^{2}+x +1\right )}{3}+\frac {\ln \left (2 x^{2}-x +2\right )}{6} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(2*x^3+3*x^2+x+5)/(2*x^4+x^3+3*x^2+x+2),x)

[Out]

x+1/6*ln(2*x^2-x+2)+1/9*15^(1/2)*arctan(1/15*(4*x-1)*15^(1/2))+1/3*ln(x^2+x+1)-10/9*3^(1/2)*arctan(1/3*(2*x+1)
*3^(1/2))

________________________________________________________________________________________

maxima [A]  time = 1.59, size = 56, normalized size = 0.78 \[ \frac {1}{9} \, \sqrt {15} \arctan \left (\frac {1}{15} \, \sqrt {15} {\left (4 \, x - 1\right )}\right ) - \frac {10}{9} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x + 1\right )}\right ) + x + \frac {1}{6} \, \log \left (2 \, x^{2} - x + 2\right ) + \frac {1}{3} \, \log \left (x^{2} + x + 1\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(2*x^3+3*x^2+x+5)/(2*x^4+x^3+3*x^2+x+2),x, algorithm="maxima")

[Out]

1/9*sqrt(15)*arctan(1/15*sqrt(15)*(4*x - 1)) - 10/9*sqrt(3)*arctan(1/3*sqrt(3)*(2*x + 1)) + x + 1/6*log(2*x^2
- x + 2) + 1/3*log(x^2 + x + 1)

________________________________________________________________________________________

mupad [B]  time = 2.29, size = 80, normalized size = 1.11 \[ x+\ln \left (x+\frac {1}{2}-\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{3}+\frac {\sqrt {3}\,5{}\mathrm {i}}{9}\right )-\ln \left (x+\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (-\frac {1}{3}+\frac {\sqrt {3}\,5{}\mathrm {i}}{9}\right )-\ln \left (x-\frac {1}{4}-\frac {\sqrt {15}\,1{}\mathrm {i}}{4}\right )\,\left (-\frac {1}{6}+\frac {\sqrt {15}\,1{}\mathrm {i}}{18}\right )+\ln \left (x-\frac {1}{4}+\frac {\sqrt {15}\,1{}\mathrm {i}}{4}\right )\,\left (\frac {1}{6}+\frac {\sqrt {15}\,1{}\mathrm {i}}{18}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(x + 3*x^2 + 2*x^3 + 5))/(x + 3*x^2 + x^3 + 2*x^4 + 2),x)

[Out]

x + log(x - (3^(1/2)*1i)/2 + 1/2)*((3^(1/2)*5i)/9 + 1/3) - log(x + (3^(1/2)*1i)/2 + 1/2)*((3^(1/2)*5i)/9 - 1/3
) - log(x - (15^(1/2)*1i)/4 - 1/4)*((15^(1/2)*1i)/18 - 1/6) + log(x + (15^(1/2)*1i)/4 - 1/4)*((15^(1/2)*1i)/18
 + 1/6)

________________________________________________________________________________________

sympy [A]  time = 0.23, size = 75, normalized size = 1.04 \[ x + \frac {\log {\left (x^{2} - \frac {x}{2} + 1 \right )}}{6} + \frac {\log {\left (x^{2} + x + 1 \right )}}{3} + \frac {\sqrt {15} \operatorname {atan}{\left (\frac {4 \sqrt {15} x}{15} - \frac {\sqrt {15}}{15} \right )}}{9} - \frac {10 \sqrt {3} \operatorname {atan}{\left (\frac {2 \sqrt {3} x}{3} + \frac {\sqrt {3}}{3} \right )}}{9} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(2*x**3+3*x**2+x+5)/(2*x**4+x**3+3*x**2+x+2),x)

[Out]

x + log(x**2 - x/2 + 1)/6 + log(x**2 + x + 1)/3 + sqrt(15)*atan(4*sqrt(15)*x/15 - sqrt(15)/15)/9 - 10*sqrt(3)*
atan(2*sqrt(3)*x/3 + sqrt(3)/3)/9

________________________________________________________________________________________