3.106 \(\int \frac {1}{a+b (c+d x)^3} \, dx\)

Optimal. Leaf size=140 \[ -\frac {\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+b^{2/3} (c+d x)^2\right )}{6 a^{2/3} \sqrt [3]{b} d}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{3 a^{2/3} \sqrt [3]{b} d}-\frac {\tan ^{-1}\left (\frac {\sqrt [3]{a}-2 \sqrt [3]{b} (c+d x)}{\sqrt {3} \sqrt [3]{a}}\right )}{\sqrt {3} a^{2/3} \sqrt [3]{b} d} \]

[Out]

1/3*ln(a^(1/3)+b^(1/3)*(d*x+c))/a^(2/3)/b^(1/3)/d-1/6*ln(a^(2/3)-a^(1/3)*b^(1/3)*(d*x+c)+b^(2/3)*(d*x+c)^2)/a^
(2/3)/b^(1/3)/d-1/3*arctan(1/3*(a^(1/3)-2*b^(1/3)*(d*x+c))/a^(1/3)*3^(1/2))/a^(2/3)/b^(1/3)/d*3^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 140, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.538, Rules used = {247, 200, 31, 634, 617, 204, 628} \[ -\frac {\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+b^{2/3} (c+d x)^2\right )}{6 a^{2/3} \sqrt [3]{b} d}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{3 a^{2/3} \sqrt [3]{b} d}-\frac {\tan ^{-1}\left (\frac {\sqrt [3]{a}-2 \sqrt [3]{b} (c+d x)}{\sqrt {3} \sqrt [3]{a}}\right )}{\sqrt {3} a^{2/3} \sqrt [3]{b} d} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*(c + d*x)^3)^(-1),x]

[Out]

-(ArcTan[(a^(1/3) - 2*b^(1/3)*(c + d*x))/(Sqrt[3]*a^(1/3))]/(Sqrt[3]*a^(2/3)*b^(1/3)*d)) + Log[a^(1/3) + b^(1/
3)*(c + d*x)]/(3*a^(2/3)*b^(1/3)*d) - Log[a^(2/3) - a^(1/3)*b^(1/3)*(c + d*x) + b^(2/3)*(c + d*x)^2]/(6*a^(2/3
)*b^(1/3)*d)

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 200

Int[((a_) + (b_.)*(x_)^3)^(-1), x_Symbol] :> Dist[1/(3*Rt[a, 3]^2), Int[1/(Rt[a, 3] + Rt[b, 3]*x), x], x] + Di
st[1/(3*Rt[a, 3]^2), Int[(2*Rt[a, 3] - Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3]^2*x^2), x], x]
 /; FreeQ[{a, b}, x]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 247

Int[((a_.) + (b_.)*(v_)^(n_))^(p_), x_Symbol] :> Dist[1/Coefficient[v, x, 1], Subst[Int[(a + b*x^n)^p, x], x,
v], x] /; FreeQ[{a, b, n, p}, x] && LinearQ[v, x] && NeQ[v, x]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rubi steps

\begin {align*} \int \frac {1}{a+b (c+d x)^3} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {1}{a+b x^3} \, dx,x,c+d x\right )}{d}\\ &=\frac {\operatorname {Subst}\left (\int \frac {1}{\sqrt [3]{a}+\sqrt [3]{b} x} \, dx,x,c+d x\right )}{3 a^{2/3} d}+\frac {\operatorname {Subst}\left (\int \frac {2 \sqrt [3]{a}-\sqrt [3]{b} x}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx,x,c+d x\right )}{3 a^{2/3} d}\\ &=\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{3 a^{2/3} \sqrt [3]{b} d}+\frac {\operatorname {Subst}\left (\int \frac {1}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx,x,c+d x\right )}{2 \sqrt [3]{a} d}-\frac {\operatorname {Subst}\left (\int \frac {-\sqrt [3]{a} \sqrt [3]{b}+2 b^{2/3} x}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx,x,c+d x\right )}{6 a^{2/3} \sqrt [3]{b} d}\\ &=\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{3 a^{2/3} \sqrt [3]{b} d}-\frac {\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+b^{2/3} (c+d x)^2\right )}{6 a^{2/3} \sqrt [3]{b} d}+\frac {\operatorname {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,1-\frac {2 \sqrt [3]{b} (c+d x)}{\sqrt [3]{a}}\right )}{a^{2/3} \sqrt [3]{b} d}\\ &=-\frac {\tan ^{-1}\left (\frac {1-\frac {2 \sqrt [3]{b} (c+d x)}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{\sqrt {3} a^{2/3} \sqrt [3]{b} d}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{3 a^{2/3} \sqrt [3]{b} d}-\frac {\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+b^{2/3} (c+d x)^2\right )}{6 a^{2/3} \sqrt [3]{b} d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 116, normalized size = 0.83 \[ \frac {-\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+b^{2/3} (c+d x)^2\right )+2 \log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )+2 \sqrt {3} \tan ^{-1}\left (\frac {2 \sqrt [3]{b} (c+d x)-\sqrt [3]{a}}{\sqrt {3} \sqrt [3]{a}}\right )}{6 a^{2/3} \sqrt [3]{b} d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*(c + d*x)^3)^(-1),x]

[Out]

(2*Sqrt[3]*ArcTan[(-a^(1/3) + 2*b^(1/3)*(c + d*x))/(Sqrt[3]*a^(1/3))] + 2*Log[a^(1/3) + b^(1/3)*(c + d*x)] - L
og[a^(2/3) - a^(1/3)*b^(1/3)*(c + d*x) + b^(2/3)*(c + d*x)^2])/(6*a^(2/3)*b^(1/3)*d)

________________________________________________________________________________________

fricas [A]  time = 0.92, size = 442, normalized size = 3.16 \[ \left [\frac {3 \, \sqrt {\frac {1}{3}} a b \sqrt {-\frac {\left (a^{2} b\right )^{\frac {1}{3}}}{b}} \log \left (\frac {2 \, a b d^{3} x^{3} + 6 \, a b c d^{2} x^{2} + 6 \, a b c^{2} d x + 2 \, a b c^{3} - a^{2} + 3 \, \sqrt {\frac {1}{3}} {\left (2 \, a b d^{2} x^{2} + 4 \, a b c d x + 2 \, a b c^{2} + \left (a^{2} b\right )^{\frac {2}{3}} {\left (d x + c\right )} - \left (a^{2} b\right )^{\frac {1}{3}} a\right )} \sqrt {-\frac {\left (a^{2} b\right )^{\frac {1}{3}}}{b}} - 3 \, \left (a^{2} b\right )^{\frac {1}{3}} {\left (a d x + a c\right )}}{b d^{3} x^{3} + 3 \, b c d^{2} x^{2} + 3 \, b c^{2} d x + b c^{3} + a}\right ) - \left (a^{2} b\right )^{\frac {2}{3}} \log \left (a b d^{2} x^{2} + 2 \, a b c d x + a b c^{2} - \left (a^{2} b\right )^{\frac {2}{3}} {\left (d x + c\right )} + \left (a^{2} b\right )^{\frac {1}{3}} a\right ) + 2 \, \left (a^{2} b\right )^{\frac {2}{3}} \log \left (a b d x + a b c + \left (a^{2} b\right )^{\frac {2}{3}}\right )}{6 \, a^{2} b d}, \frac {6 \, \sqrt {\frac {1}{3}} a b \sqrt {\frac {\left (a^{2} b\right )^{\frac {1}{3}}}{b}} \arctan \left (\frac {\sqrt {\frac {1}{3}} {\left (2 \, \left (a^{2} b\right )^{\frac {2}{3}} {\left (d x + c\right )} - \left (a^{2} b\right )^{\frac {1}{3}} a\right )} \sqrt {\frac {\left (a^{2} b\right )^{\frac {1}{3}}}{b}}}{a^{2}}\right ) - \left (a^{2} b\right )^{\frac {2}{3}} \log \left (a b d^{2} x^{2} + 2 \, a b c d x + a b c^{2} - \left (a^{2} b\right )^{\frac {2}{3}} {\left (d x + c\right )} + \left (a^{2} b\right )^{\frac {1}{3}} a\right ) + 2 \, \left (a^{2} b\right )^{\frac {2}{3}} \log \left (a b d x + a b c + \left (a^{2} b\right )^{\frac {2}{3}}\right )}{6 \, a^{2} b d}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*(d*x+c)^3),x, algorithm="fricas")

[Out]

[1/6*(3*sqrt(1/3)*a*b*sqrt(-(a^2*b)^(1/3)/b)*log((2*a*b*d^3*x^3 + 6*a*b*c*d^2*x^2 + 6*a*b*c^2*d*x + 2*a*b*c^3
- a^2 + 3*sqrt(1/3)*(2*a*b*d^2*x^2 + 4*a*b*c*d*x + 2*a*b*c^2 + (a^2*b)^(2/3)*(d*x + c) - (a^2*b)^(1/3)*a)*sqrt
(-(a^2*b)^(1/3)/b) - 3*(a^2*b)^(1/3)*(a*d*x + a*c))/(b*d^3*x^3 + 3*b*c*d^2*x^2 + 3*b*c^2*d*x + b*c^3 + a)) - (
a^2*b)^(2/3)*log(a*b*d^2*x^2 + 2*a*b*c*d*x + a*b*c^2 - (a^2*b)^(2/3)*(d*x + c) + (a^2*b)^(1/3)*a) + 2*(a^2*b)^
(2/3)*log(a*b*d*x + a*b*c + (a^2*b)^(2/3)))/(a^2*b*d), 1/6*(6*sqrt(1/3)*a*b*sqrt((a^2*b)^(1/3)/b)*arctan(sqrt(
1/3)*(2*(a^2*b)^(2/3)*(d*x + c) - (a^2*b)^(1/3)*a)*sqrt((a^2*b)^(1/3)/b)/a^2) - (a^2*b)^(2/3)*log(a*b*d^2*x^2
+ 2*a*b*c*d*x + a*b*c^2 - (a^2*b)^(2/3)*(d*x + c) + (a^2*b)^(1/3)*a) + 2*(a^2*b)^(2/3)*log(a*b*d*x + a*b*c + (
a^2*b)^(2/3)))/(a^2*b*d)]

________________________________________________________________________________________

giac [A]  time = 0.45, size = 160, normalized size = 1.14 \[ \frac {1}{3} \, \sqrt {3} \left (\frac {1}{a^{2} b d^{3}}\right )^{\frac {1}{3}} \arctan \left (-\frac {b d x + b c + \left (a b^{2}\right )^{\frac {1}{3}}}{\sqrt {3} b d x + \sqrt {3} b c - \sqrt {3} \left (a b^{2}\right )^{\frac {1}{3}}}\right ) - \frac {1}{6} \, \left (\frac {1}{a^{2} b d^{3}}\right )^{\frac {1}{3}} \log \left (4 \, {\left (\sqrt {3} b d x + \sqrt {3} b c - \sqrt {3} \left (a b^{2}\right )^{\frac {1}{3}}\right )}^{2} + 4 \, {\left (b d x + b c + \left (a b^{2}\right )^{\frac {1}{3}}\right )}^{2}\right ) + \frac {1}{3} \, \left (\frac {1}{a^{2} b d^{3}}\right )^{\frac {1}{3}} \log \left ({\left | b d x + b c + \left (a b^{2}\right )^{\frac {1}{3}} \right |}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*(d*x+c)^3),x, algorithm="giac")

[Out]

1/3*sqrt(3)*(1/(a^2*b*d^3))^(1/3)*arctan(-(b*d*x + b*c + (a*b^2)^(1/3))/(sqrt(3)*b*d*x + sqrt(3)*b*c - sqrt(3)
*(a*b^2)^(1/3))) - 1/6*(1/(a^2*b*d^3))^(1/3)*log(4*(sqrt(3)*b*d*x + sqrt(3)*b*c - sqrt(3)*(a*b^2)^(1/3))^2 + 4
*(b*d*x + b*c + (a*b^2)^(1/3))^2) + 1/3*(1/(a^2*b*d^3))^(1/3)*log(abs(b*d*x + b*c + (a*b^2)^(1/3)))

________________________________________________________________________________________

maple [C]  time = 0.00, size = 71, normalized size = 0.51 \[ \frac {\ln \left (-\RootOf \left (b \,d^{3} \textit {\_Z}^{3}+3 b \,d^{2} c \,\textit {\_Z}^{2}+3 b d \,c^{2} \textit {\_Z} +b \,c^{3}+a \right )+x \right )}{3 b d \left (d^{2} \RootOf \left (b \,d^{3} \textit {\_Z}^{3}+3 b \,d^{2} c \,\textit {\_Z}^{2}+3 b d \,c^{2} \textit {\_Z} +b \,c^{3}+a \right )^{2}+2 c d \RootOf \left (b \,d^{3} \textit {\_Z}^{3}+3 b \,d^{2} c \,\textit {\_Z}^{2}+3 b d \,c^{2} \textit {\_Z} +b \,c^{3}+a \right )+c^{2}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*(d*x+c)^3),x)

[Out]

1/3/b/d*sum(1/(_R^2*d^2+2*_R*c*d+c^2)*ln(-_R+x),_R=RootOf(_Z^3*b*d^3+3*_Z^2*b*c*d^2+3*_Z*b*c^2*d+b*c^3+a))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (d x + c\right )}^{3} b + a}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*(d*x+c)^3),x, algorithm="maxima")

[Out]

integrate(1/((d*x + c)^3*b + a), x)

________________________________________________________________________________________

mupad [B]  time = 2.31, size = 144, normalized size = 1.03 \[ \frac {\ln \left (b^{1/3}\,c+a^{1/3}+b^{1/3}\,d\,x\right )}{3\,a^{2/3}\,b^{1/3}\,d}+\frac {\ln \left (3\,b^2\,c\,d^5+3\,b^2\,d^6\,x+\frac {3\,a^{1/3}\,b^{5/3}\,d^5\,\left (-1+\sqrt {3}\,1{}\mathrm {i}\right )}{2}\right )\,\left (-1+\sqrt {3}\,1{}\mathrm {i}\right )}{6\,a^{2/3}\,b^{1/3}\,d}-\frac {\ln \left (3\,b^2\,c\,d^5+3\,b^2\,d^6\,x-\frac {3\,a^{1/3}\,b^{5/3}\,d^5\,\left (1+\sqrt {3}\,1{}\mathrm {i}\right )}{2}\right )\,\left (1+\sqrt {3}\,1{}\mathrm {i}\right )}{6\,a^{2/3}\,b^{1/3}\,d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a + b*(c + d*x)^3),x)

[Out]

log(b^(1/3)*c + a^(1/3) + b^(1/3)*d*x)/(3*a^(2/3)*b^(1/3)*d) + (log(3*b^2*c*d^5 + 3*b^2*d^6*x + (3*a^(1/3)*b^(
5/3)*d^5*(3^(1/2)*1i - 1))/2)*(3^(1/2)*1i - 1))/(6*a^(2/3)*b^(1/3)*d) - (log(3*b^2*c*d^5 + 3*b^2*d^6*x - (3*a^
(1/3)*b^(5/3)*d^5*(3^(1/2)*1i + 1))/2)*(3^(1/2)*1i + 1))/(6*a^(2/3)*b^(1/3)*d)

________________________________________________________________________________________

sympy [A]  time = 0.26, size = 26, normalized size = 0.19 \[ \frac {\operatorname {RootSum} {\left (27 t^{3} a^{2} b - 1, \left (t \mapsto t \log {\left (x + \frac {3 t a + c}{d} \right )} \right )\right )}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*(d*x+c)**3),x)

[Out]

RootSum(27*_t**3*a**2*b - 1, Lambda(_t, _t*log(x + (3*_t*a + c)/d)))/d

________________________________________________________________________________________