Optimal. Leaf size=24 \[ 3+\log \left (2 \log \left (\frac {1}{5} \log (x) \log ^2\left (\frac {3}{\left (e^2+x\right )^2}\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 3.17, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-4 x \log (x)+\left (e^2+x\right ) \log \left (\frac {3}{e^4+2 e^2 x+x^2}\right )}{\left (e^2 x+x^2\right ) \log (x) \log \left (\frac {3}{e^4+2 e^2 x+x^2}\right ) \log \left (\frac {1}{5} \log (x) \log ^2\left (\frac {3}{e^4+2 e^2 x+x^2}\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-4 x \log (x)+\left (e^2+x\right ) \log \left (\frac {3}{e^4+2 e^2 x+x^2}\right )}{x \left (e^2+x\right ) \log (x) \log \left (\frac {3}{e^4+2 e^2 x+x^2}\right ) \log \left (\frac {1}{5} \log (x) \log ^2\left (\frac {3}{e^4+2 e^2 x+x^2}\right )\right )} \, dx\\ &=\int \frac {-4 x \log (x)+\left (e^2+x\right ) \log \left (\frac {3}{\left (e^2+x\right )^2}\right )}{x \left (e^2+x\right ) \log (x) \log \left (\frac {3}{\left (e^2+x\right )^2}\right ) \log \left (\frac {1}{5} \log (x) \log ^2\left (\frac {3}{\left (e^2+x\right )^2}\right )\right )} \, dx\\ &=\int \left (\frac {4 x \log (x)-e^2 \log \left (\frac {3}{\left (e^2+x\right )^2}\right )-x \log \left (\frac {3}{\left (e^2+x\right )^2}\right )}{e^2 \left (e^2+x\right ) \log (x) \log \left (\frac {3}{\left (e^2+x\right )^2}\right ) \log \left (\frac {1}{5} \log (x) \log ^2\left (\frac {3}{\left (e^2+x\right )^2}\right )\right )}+\frac {-4 x \log (x)+e^2 \log \left (\frac {3}{\left (e^2+x\right )^2}\right )+x \log \left (\frac {3}{\left (e^2+x\right )^2}\right )}{e^2 x \log (x) \log \left (\frac {3}{\left (e^2+x\right )^2}\right ) \log \left (\frac {1}{5} \log (x) \log ^2\left (\frac {3}{\left (e^2+x\right )^2}\right )\right )}\right ) \, dx\\ &=\frac {\int \frac {4 x \log (x)-e^2 \log \left (\frac {3}{\left (e^2+x\right )^2}\right )-x \log \left (\frac {3}{\left (e^2+x\right )^2}\right )}{\left (e^2+x\right ) \log (x) \log \left (\frac {3}{\left (e^2+x\right )^2}\right ) \log \left (\frac {1}{5} \log (x) \log ^2\left (\frac {3}{\left (e^2+x\right )^2}\right )\right )} \, dx}{e^2}+\frac {\int \frac {-4 x \log (x)+e^2 \log \left (\frac {3}{\left (e^2+x\right )^2}\right )+x \log \left (\frac {3}{\left (e^2+x\right )^2}\right )}{x \log (x) \log \left (\frac {3}{\left (e^2+x\right )^2}\right ) \log \left (\frac {1}{5} \log (x) \log ^2\left (\frac {3}{\left (e^2+x\right )^2}\right )\right )} \, dx}{e^2}\\ &=\frac {\int \frac {4 x \log (x)-\left (e^2+x\right ) \log \left (\frac {3}{\left (e^2+x\right )^2}\right )}{\left (e^2+x\right ) \log (x) \log \left (\frac {3}{\left (e^2+x\right )^2}\right ) \log \left (\frac {1}{5} \log (x) \log ^2\left (\frac {3}{\left (e^2+x\right )^2}\right )\right )} \, dx}{e^2}+\frac {\int \frac {-4 x \log (x)+\left (e^2+x\right ) \log \left (\frac {3}{\left (e^2+x\right )^2}\right )}{x \log (x) \log \left (\frac {3}{\left (e^2+x\right )^2}\right ) \log \left (\frac {1}{5} \log (x) \log ^2\left (\frac {3}{\left (e^2+x\right )^2}\right )\right )} \, dx}{e^2}\\ &=\frac {\int \left (\frac {1}{\log (x) \log \left (\frac {1}{5} \log (x) \log ^2\left (\frac {3}{\left (e^2+x\right )^2}\right )\right )}+\frac {e^2}{x \log (x) \log \left (\frac {1}{5} \log (x) \log ^2\left (\frac {3}{\left (e^2+x\right )^2}\right )\right )}-\frac {4}{\log \left (\frac {3}{\left (e^2+x\right )^2}\right ) \log \left (\frac {1}{5} \log (x) \log ^2\left (\frac {3}{\left (e^2+x\right )^2}\right )\right )}\right ) \, dx}{e^2}+\frac {\int \left (-\frac {e^2}{\left (e^2+x\right ) \log (x) \log \left (\frac {1}{5} \log (x) \log ^2\left (\frac {3}{\left (e^2+x\right )^2}\right )\right )}-\frac {x}{\left (e^2+x\right ) \log (x) \log \left (\frac {1}{5} \log (x) \log ^2\left (\frac {3}{\left (e^2+x\right )^2}\right )\right )}+\frac {4 x}{\left (e^2+x\right ) \log \left (\frac {3}{\left (e^2+x\right )^2}\right ) \log \left (\frac {1}{5} \log (x) \log ^2\left (\frac {3}{\left (e^2+x\right )^2}\right )\right )}\right ) \, dx}{e^2}\\ &=\frac {\int \frac {1}{\log (x) \log \left (\frac {1}{5} \log (x) \log ^2\left (\frac {3}{\left (e^2+x\right )^2}\right )\right )} \, dx}{e^2}-\frac {\int \frac {x}{\left (e^2+x\right ) \log (x) \log \left (\frac {1}{5} \log (x) \log ^2\left (\frac {3}{\left (e^2+x\right )^2}\right )\right )} \, dx}{e^2}-\frac {4 \int \frac {1}{\log \left (\frac {3}{\left (e^2+x\right )^2}\right ) \log \left (\frac {1}{5} \log (x) \log ^2\left (\frac {3}{\left (e^2+x\right )^2}\right )\right )} \, dx}{e^2}+\frac {4 \int \frac {x}{\left (e^2+x\right ) \log \left (\frac {3}{\left (e^2+x\right )^2}\right ) \log \left (\frac {1}{5} \log (x) \log ^2\left (\frac {3}{\left (e^2+x\right )^2}\right )\right )} \, dx}{e^2}+\int \frac {1}{x \log (x) \log \left (\frac {1}{5} \log (x) \log ^2\left (\frac {3}{\left (e^2+x\right )^2}\right )\right )} \, dx-\int \frac {1}{\left (e^2+x\right ) \log (x) \log \left (\frac {1}{5} \log (x) \log ^2\left (\frac {3}{\left (e^2+x\right )^2}\right )\right )} \, dx\\ &=-\frac {\int \left (\frac {1}{\log (x) \log \left (\frac {1}{5} \log (x) \log ^2\left (\frac {3}{\left (e^2+x\right )^2}\right )\right )}-\frac {e^2}{\left (e^2+x\right ) \log (x) \log \left (\frac {1}{5} \log (x) \log ^2\left (\frac {3}{\left (e^2+x\right )^2}\right )\right )}\right ) \, dx}{e^2}+\frac {\int \frac {1}{\log (x) \log \left (\frac {1}{5} \log (x) \log ^2\left (\frac {3}{\left (e^2+x\right )^2}\right )\right )} \, dx}{e^2}+\frac {4 \int \left (\frac {1}{\log \left (\frac {3}{\left (e^2+x\right )^2}\right ) \log \left (\frac {1}{5} \log (x) \log ^2\left (\frac {3}{\left (e^2+x\right )^2}\right )\right )}-\frac {e^2}{\left (e^2+x\right ) \log \left (\frac {3}{\left (e^2+x\right )^2}\right ) \log \left (\frac {1}{5} \log (x) \log ^2\left (\frac {3}{\left (e^2+x\right )^2}\right )\right )}\right ) \, dx}{e^2}-\frac {4 \int \frac {1}{\log \left (\frac {3}{\left (e^2+x\right )^2}\right ) \log \left (\frac {1}{5} \log (x) \log ^2\left (\frac {3}{\left (e^2+x\right )^2}\right )\right )} \, dx}{e^2}+\int \frac {1}{x \log (x) \log \left (\frac {1}{5} \log (x) \log ^2\left (\frac {3}{\left (e^2+x\right )^2}\right )\right )} \, dx-\int \frac {1}{\left (e^2+x\right ) \log (x) \log \left (\frac {1}{5} \log (x) \log ^2\left (\frac {3}{\left (e^2+x\right )^2}\right )\right )} \, dx\\ &=-\left (4 \int \frac {1}{\left (e^2+x\right ) \log \left (\frac {3}{\left (e^2+x\right )^2}\right ) \log \left (\frac {1}{5} \log (x) \log ^2\left (\frac {3}{\left (e^2+x\right )^2}\right )\right )} \, dx\right )+\int \frac {1}{x \log (x) \log \left (\frac {1}{5} \log (x) \log ^2\left (\frac {3}{\left (e^2+x\right )^2}\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 20, normalized size = 0.83 \begin {gather*} \log \left (\log \left (\frac {1}{5} \log (x) \log ^2\left (\frac {3}{\left (e^2+x\right )^2}\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.04, size = 24, normalized size = 1.00 \begin {gather*} \log \left (\log \left (\frac {1}{5} \, \log \relax (x) \log \left (\frac {3}{x^{2} + 2 \, x e^{2} + e^{4}}\right )^{2}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 3.44, size = 50, normalized size = 2.08 \begin {gather*} \log \left (-\log \relax (5) + \log \left (\log \relax (3)^{2} \log \relax (x) - 2 \, \log \relax (3) \log \left (x^{2} + 2 \, x e^{2} + e^{4}\right ) \log \relax (x) + \log \left (x^{2} + 2 \, x e^{2} + e^{4}\right )^{2} \log \relax (x)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.90, size = 1127, normalized size = 46.96
method | result | size |
risch | \(\ln \left (\ln \left (-4 i \ln \left (x +{\mathrm e}^{2}\right )+2 i \ln \relax (3)-\pi \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )^{2}\right )^{3}-\pi \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )\right )^{2} \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )^{2}\right )+2 \pi \,\mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )\right ) \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )^{2}\right )^{2}\right )-\frac {i \left (\pi \,\mathrm {csgn}\left (i \ln \relax (x )\right ) \mathrm {csgn}\left (i \left (-4 i \ln \left (x +{\mathrm e}^{2}\right )+2 i \ln \relax (3)-\pi \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )^{2}\right )^{3}-\pi \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )\right )^{2} \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )^{2}\right )+2 \pi \,\mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )\right ) \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )^{2}\right )^{2}\right )^{2}\right ) \mathrm {csgn}\left (i \ln \relax (x ) \left (-4 i \ln \left (x +{\mathrm e}^{2}\right )+2 i \ln \relax (3)-\pi \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )^{2}\right )^{3}-\pi \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )\right )^{2} \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )^{2}\right )+2 \pi \,\mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )\right ) \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )^{2}\right )^{2}\right )^{2}\right )-\pi \,\mathrm {csgn}\left (i \ln \relax (x )\right ) \mathrm {csgn}\left (i \ln \relax (x ) \left (-4 i \ln \left (x +{\mathrm e}^{2}\right )+2 i \ln \relax (3)-\pi \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )^{2}\right )^{3}-\pi \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )\right )^{2} \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )^{2}\right )+2 \pi \,\mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )\right ) \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )^{2}\right )^{2}\right )^{2}\right )^{2}+2 \pi \mathrm {csgn}\left (i \ln \relax (x ) \left (-4 i \ln \left (x +{\mathrm e}^{2}\right )+2 i \ln \relax (3)-\pi \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )^{2}\right )^{3}-\pi \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )\right )^{2} \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )^{2}\right )+2 \pi \,\mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )\right ) \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )^{2}\right )^{2}\right )^{2}\right )^{2}+\pi \mathrm {csgn}\left (i \left (-4 i \ln \left (x +{\mathrm e}^{2}\right )+2 i \ln \relax (3)-\pi \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )^{2}\right )^{3}-\pi \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )\right )^{2} \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )^{2}\right )+2 \pi \,\mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )\right ) \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )^{2}\right )^{2}\right )\right )^{2} \mathrm {csgn}\left (i \left (-4 i \ln \left (x +{\mathrm e}^{2}\right )+2 i \ln \relax (3)-\pi \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )^{2}\right )^{3}-\pi \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )\right )^{2} \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )^{2}\right )+2 \pi \,\mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )\right ) \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )^{2}\right )^{2}\right )^{2}\right )-2 \pi \,\mathrm {csgn}\left (i \left (-4 i \ln \left (x +{\mathrm e}^{2}\right )+2 i \ln \relax (3)-\pi \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )^{2}\right )^{3}-\pi \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )\right )^{2} \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )^{2}\right )+2 \pi \,\mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )\right ) \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )^{2}\right )^{2}\right )\right ) \mathrm {csgn}\left (i \left (-4 i \ln \left (x +{\mathrm e}^{2}\right )+2 i \ln \relax (3)-\pi \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )^{2}\right )^{3}-\pi \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )\right )^{2} \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )^{2}\right )+2 \pi \,\mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )\right ) \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )^{2}\right )^{2}\right )^{2}\right )^{2}+\pi \mathrm {csgn}\left (i \left (-4 i \ln \left (x +{\mathrm e}^{2}\right )+2 i \ln \relax (3)-\pi \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )^{2}\right )^{3}-\pi \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )\right )^{2} \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )^{2}\right )+2 \pi \,\mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )\right ) \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )^{2}\right )^{2}\right )^{2}\right )^{3}-\pi \,\mathrm {csgn}\left (i \left (-4 i \ln \left (x +{\mathrm e}^{2}\right )+2 i \ln \relax (3)-\pi \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )^{2}\right )^{3}-\pi \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )\right )^{2} \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )^{2}\right )+2 \pi \,\mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )\right ) \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )^{2}\right )^{2}\right )^{2}\right ) \mathrm {csgn}\left (i \ln \relax (x ) \left (-4 i \ln \left (x +{\mathrm e}^{2}\right )+2 i \ln \relax (3)-\pi \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )^{2}\right )^{3}-\pi \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )\right )^{2} \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )^{2}\right )+2 \pi \,\mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )\right ) \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )^{2}\right )^{2}\right )^{2}\right )^{2}-\pi \mathrm {csgn}\left (i \ln \relax (x ) \left (-4 i \ln \left (x +{\mathrm e}^{2}\right )+2 i \ln \relax (3)-\pi \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )^{2}\right )^{3}-\pi \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )\right )^{2} \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )^{2}\right )+2 \pi \,\mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )\right ) \mathrm {csgn}\left (i \left (x +{\mathrm e}^{2}\right )^{2}\right )^{2}\right )^{2}\right )^{3}-4 i \ln \relax (2)-2 i \ln \relax (5)+2 i \ln \left (\ln \relax (x )\right )-2 \pi \right )}{4}\right )\) | \(1127\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.53, size = 24, normalized size = 1.00 \begin {gather*} \log \left (-\frac {1}{2} \, \log \relax (5) + \log \left (-\log \relax (3) + 2 \, \log \left (x + e^{2}\right )\right ) + \frac {1}{2} \, \log \left (\log \relax (x)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 10.52, size = 24, normalized size = 1.00 \begin {gather*} \ln \left (\ln \left (\frac {{\ln \left (\frac {3}{x^2+2\,{\mathrm {e}}^2\,x+{\mathrm {e}}^4}\right )}^2\,\ln \relax (x)}{5}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.75, size = 26, normalized size = 1.08 \begin {gather*} \log {\left (\log {\left (\frac {\log {\relax (x )} \log {\left (\frac {3}{x^{2} + 2 x e^{2} + e^{4}} \right )}^{2}}{5} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________