Optimal. Leaf size=22 \[ \log \left (e^x+e^{-x} \left (-8 \left (-3+e^6\right )+x^2\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.41, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-24+8 e^6+e^{2 x}+2 x-x^2}{24-8 e^6+e^{2 x}+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{2 x}-24 \left (1-\frac {e^6}{3}\right )+2 x-x^2}{e^{2 x}+24 \left (1-\frac {e^6}{3}\right )+x^2} \, dx\\ &=\int \left (1+\frac {2 \left (-8 \left (3-e^6\right )+x-x^2\right )}{e^{2 x}+24 \left (1-\frac {e^6}{3}\right )+x^2}\right ) \, dx\\ &=x+2 \int \frac {-8 \left (3-e^6\right )+x-x^2}{e^{2 x}+24 \left (1-\frac {e^6}{3}\right )+x^2} \, dx\\ &=x+2 \int \left (\frac {x^2}{-e^{2 x}-24 \left (1-\frac {e^6}{3}\right )-x^2}+\frac {8 \left (-3+e^6\right )}{e^{2 x}+24 \left (1-\frac {e^6}{3}\right )+x^2}+\frac {x}{e^{2 x}+24 \left (1-\frac {e^6}{3}\right )+x^2}\right ) \, dx\\ &=x+2 \int \frac {x^2}{-e^{2 x}-24 \left (1-\frac {e^6}{3}\right )-x^2} \, dx+2 \int \frac {x}{e^{2 x}+24 \left (1-\frac {e^6}{3}\right )+x^2} \, dx-\left (16 \left (3-e^6\right )\right ) \int \frac {1}{e^{2 x}+24 \left (1-\frac {e^6}{3}\right )+x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 20, normalized size = 0.91 \begin {gather*} -x+\log \left (24-8 e^6+e^{2 x}+x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.79, size = 18, normalized size = 0.82 \begin {gather*} -x + \log \left (x^{2} - 8 \, e^{6} + e^{\left (2 \, x\right )} + 24\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 22, normalized size = 1.00 \begin {gather*} -x + \log \left (-x^{2} + 8 \, e^{6} - e^{\left (2 \, x\right )} - 24\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 19, normalized size = 0.86
method | result | size |
risch | \(-x +\ln \left ({\mathrm e}^{2 x}-8 \,{\mathrm e}^{6}+x^{2}+24\right )\) | \(19\) |
norman | \(-x +\ln \left (8 \,{\mathrm e}^{6}-x^{2}-{\mathrm e}^{2 x}-24\right )\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 18, normalized size = 0.82 \begin {gather*} -x + \log \left (x^{2} - 8 \, e^{6} + e^{\left (2 \, x\right )} + 24\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.13, size = 18, normalized size = 0.82 \begin {gather*} \ln \left ({\mathrm {e}}^{2\,x}-8\,{\mathrm {e}}^6+x^2+24\right )-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 17, normalized size = 0.77 \begin {gather*} - x + \log {\left (x^{2} + e^{2 x} - 8 e^{6} + 24 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________