Optimal. Leaf size=20 \[ \frac {\log ^4\left (e^x-e^{x+x^2}\right )}{x^4} \]
________________________________________________________________________________________
Rubi [F] time = 1.07, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-4 e^x x+e^{x+x^2} \left (4 x+8 x^2\right )\right ) \log ^3\left (e^x-e^{x+x^2}\right )+\left (4 e^x-4 e^{x+x^2}\right ) \log ^4\left (e^x-e^{x+x^2}\right )}{-e^x x^5+e^{x+x^2} x^5} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 \left (\frac {x \left (-1+e^{x^2} (1+2 x)\right )}{-1+e^{x^2}}-\log \left (-e^x \left (-1+e^{x^2}\right )\right )\right ) \log ^3\left (-e^x \left (-1+e^{x^2}\right )\right )}{x^5} \, dx\\ &=4 \int \frac {\left (\frac {x \left (-1+e^{x^2} (1+2 x)\right )}{-1+e^{x^2}}-\log \left (-e^x \left (-1+e^{x^2}\right )\right )\right ) \log ^3\left (-e^x \left (-1+e^{x^2}\right )\right )}{x^5} \, dx\\ &=4 \int \left (\frac {2 \log ^3\left (-e^x \left (-1+e^{x^2}\right )\right )}{\left (-1+e^{x^2}\right ) x^3}+\frac {\left (x+2 x^2-\log \left (-e^x \left (-1+e^{x^2}\right )\right )\right ) \log ^3\left (-e^x \left (-1+e^{x^2}\right )\right )}{x^5}\right ) \, dx\\ &=4 \int \frac {\left (x+2 x^2-\log \left (-e^x \left (-1+e^{x^2}\right )\right )\right ) \log ^3\left (-e^x \left (-1+e^{x^2}\right )\right )}{x^5} \, dx+8 \int \frac {\log ^3\left (-e^x \left (-1+e^{x^2}\right )\right )}{\left (-1+e^{x^2}\right ) x^3} \, dx\\ &=4 \int \left (\frac {(1+2 x) \log ^3\left (-e^x \left (-1+e^{x^2}\right )\right )}{x^4}-\frac {\log ^4\left (-e^x \left (-1+e^{x^2}\right )\right )}{x^5}\right ) \, dx+8 \int \frac {\log ^3\left (-e^x \left (-1+e^{x^2}\right )\right )}{\left (-1+e^{x^2}\right ) x^3} \, dx\\ &=4 \int \frac {(1+2 x) \log ^3\left (-e^x \left (-1+e^{x^2}\right )\right )}{x^4} \, dx-4 \int \frac {\log ^4\left (-e^x \left (-1+e^{x^2}\right )\right )}{x^5} \, dx+8 \int \frac {\log ^3\left (-e^x \left (-1+e^{x^2}\right )\right )}{\left (-1+e^{x^2}\right ) x^3} \, dx\\ &=-\left (4 \int \frac {\log ^4\left (-e^x \left (-1+e^{x^2}\right )\right )}{x^5} \, dx\right )+4 \int \left (\frac {\log ^3\left (-e^x \left (-1+e^{x^2}\right )\right )}{x^4}+\frac {2 \log ^3\left (-e^x \left (-1+e^{x^2}\right )\right )}{x^3}\right ) \, dx+8 \int \frac {\log ^3\left (-e^x \left (-1+e^{x^2}\right )\right )}{\left (-1+e^{x^2}\right ) x^3} \, dx\\ &=4 \int \frac {\log ^3\left (-e^x \left (-1+e^{x^2}\right )\right )}{x^4} \, dx-4 \int \frac {\log ^4\left (-e^x \left (-1+e^{x^2}\right )\right )}{x^5} \, dx+8 \int \frac {\log ^3\left (-e^x \left (-1+e^{x^2}\right )\right )}{x^3} \, dx+8 \int \frac {\log ^3\left (-e^x \left (-1+e^{x^2}\right )\right )}{\left (-1+e^{x^2}\right ) x^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.26, size = 21, normalized size = 1.05 \begin {gather*} -1+\frac {\log ^4\left (-e^x \left (-1+e^{x^2}\right )\right )}{x^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.86, size = 18, normalized size = 0.90 \begin {gather*} \frac {\log \left (-e^{\left (x^{2} + x\right )} + e^{x}\right )^{4}}{x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 2.01, size = 18, normalized size = 0.90 \begin {gather*} \frac {\log \left (-e^{\left (x^{2} + x\right )} + e^{x}\right )^{4}}{x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 19, normalized size = 0.95
method | result | size |
risch | \(\frac {\ln \left (-{\mathrm e}^{\left (x +1\right ) x}+{\mathrm e}^{x}\right )^{4}}{x^{4}}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.40, size = 60, normalized size = 3.00 \begin {gather*} \frac {4 \, x^{3} \log \left (-e^{\left (x^{2}\right )} + 1\right ) + 6 \, x^{2} \log \left (-e^{\left (x^{2}\right )} + 1\right )^{2} + 4 \, x \log \left (-e^{\left (x^{2}\right )} + 1\right )^{3} + \log \left (-e^{\left (x^{2}\right )} + 1\right )^{4}}{x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.46, size = 18, normalized size = 0.90 \begin {gather*} \frac {{\ln \left ({\mathrm {e}}^x-{\mathrm {e}}^{x^2}\,{\mathrm {e}}^x\right )}^4}{x^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.49, size = 15, normalized size = 0.75 \begin {gather*} \frac {\log {\left (e^{x} - e^{x^{2} + x} \right )}^{4}}{x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________