Optimal. Leaf size=27 \[ -4+x+\frac {x}{2 \sqrt [3]{e}-\frac {(5+x) \log \left (x^2\right )}{x}} \]
________________________________________________________________________________________
Rubi [F] time = 1.39, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {10 x+2 x^2+2 \sqrt [3]{e} x^2+4 e^{2/3} x^2+\left (-10 x-x^2+\sqrt [3]{e} \left (-20 x-4 x^2\right )\right ) \log \left (x^2\right )+\left (25+10 x+x^2\right ) \log ^2\left (x^2\right )}{4 e^{2/3} x^2+\sqrt [3]{e} \left (-20 x-4 x^2\right ) \log \left (x^2\right )+\left (25+10 x+x^2\right ) \log ^2\left (x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {10 x+\left (2+2 \sqrt [3]{e}\right ) x^2+4 e^{2/3} x^2+\left (-10 x-x^2+\sqrt [3]{e} \left (-20 x-4 x^2\right )\right ) \log \left (x^2\right )+\left (25+10 x+x^2\right ) \log ^2\left (x^2\right )}{4 e^{2/3} x^2+\sqrt [3]{e} \left (-20 x-4 x^2\right ) \log \left (x^2\right )+\left (25+10 x+x^2\right ) \log ^2\left (x^2\right )} \, dx\\ &=\int \frac {10 x+\left (2+2 \sqrt [3]{e}+4 e^{2/3}\right ) x^2+\left (-10 x-x^2+\sqrt [3]{e} \left (-20 x-4 x^2\right )\right ) \log \left (x^2\right )+\left (25+10 x+x^2\right ) \log ^2\left (x^2\right )}{4 e^{2/3} x^2+\sqrt [3]{e} \left (-20 x-4 x^2\right ) \log \left (x^2\right )+\left (25+10 x+x^2\right ) \log ^2\left (x^2\right )} \, dx\\ &=\int \frac {2 x \left (5+\left (1+\sqrt [3]{e}+2 e^{2/3}\right ) x\right )-x \left (10+x+4 \sqrt [3]{e} (5+x)\right ) \log \left (x^2\right )+(5+x)^2 \log ^2\left (x^2\right )}{\left (2 \sqrt [3]{e} x-(5+x) \log \left (x^2\right )\right )^2} \, dx\\ &=\int \left (1+\frac {2 x \left (25+5 \left (2-\sqrt [3]{e}\right ) x+x^2\right )}{(5+x) \left (2 \sqrt [3]{e} x-5 \log \left (x^2\right )-x \log \left (x^2\right )\right )^2}+\frac {x (10+x)}{(5+x) \left (2 \sqrt [3]{e} x-5 \log \left (x^2\right )-x \log \left (x^2\right )\right )}\right ) \, dx\\ &=x+2 \int \frac {x \left (25+5 \left (2-\sqrt [3]{e}\right ) x+x^2\right )}{(5+x) \left (2 \sqrt [3]{e} x-5 \log \left (x^2\right )-x \log \left (x^2\right )\right )^2} \, dx+\int \frac {x (10+x)}{(5+x) \left (2 \sqrt [3]{e} x-5 \log \left (x^2\right )-x \log \left (x^2\right )\right )} \, dx\\ &=x+2 \int \left (\frac {25 \sqrt [3]{e}}{\left (2 \sqrt [3]{e} x-5 \log \left (x^2\right )-x \log \left (x^2\right )\right )^2}-\frac {5 \left (-1+\sqrt [3]{e}\right ) x}{\left (2 \sqrt [3]{e} x-5 \log \left (x^2\right )-x \log \left (x^2\right )\right )^2}+\frac {x^2}{\left (2 \sqrt [3]{e} x-5 \log \left (x^2\right )-x \log \left (x^2\right )\right )^2}-\frac {125 \sqrt [3]{e}}{(5+x) \left (2 \sqrt [3]{e} x-5 \log \left (x^2\right )-x \log \left (x^2\right )\right )^2}\right ) \, dx+\int \left (\frac {5}{2 \sqrt [3]{e} x-5 \log \left (x^2\right )-x \log \left (x^2\right )}+\frac {x}{2 \sqrt [3]{e} x-5 \log \left (x^2\right )-x \log \left (x^2\right )}-\frac {25}{(5+x) \left (2 \sqrt [3]{e} x-5 \log \left (x^2\right )-x \log \left (x^2\right )\right )}\right ) \, dx\\ &=x+2 \int \frac {x^2}{\left (2 \sqrt [3]{e} x-5 \log \left (x^2\right )-x \log \left (x^2\right )\right )^2} \, dx+5 \int \frac {1}{2 \sqrt [3]{e} x-5 \log \left (x^2\right )-x \log \left (x^2\right )} \, dx-25 \int \frac {1}{(5+x) \left (2 \sqrt [3]{e} x-5 \log \left (x^2\right )-x \log \left (x^2\right )\right )} \, dx+\left (10 \left (1-\sqrt [3]{e}\right )\right ) \int \frac {x}{\left (2 \sqrt [3]{e} x-5 \log \left (x^2\right )-x \log \left (x^2\right )\right )^2} \, dx+\left (50 \sqrt [3]{e}\right ) \int \frac {1}{\left (2 \sqrt [3]{e} x-5 \log \left (x^2\right )-x \log \left (x^2\right )\right )^2} \, dx-\left (250 \sqrt [3]{e}\right ) \int \frac {1}{(5+x) \left (2 \sqrt [3]{e} x-5 \log \left (x^2\right )-x \log \left (x^2\right )\right )^2} \, dx+\int \frac {x}{2 \sqrt [3]{e} x-5 \log \left (x^2\right )-x \log \left (x^2\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.61, size = 26, normalized size = 0.96 \begin {gather*} x+\frac {x^2}{2 \sqrt [3]{e} x-(5+x) \log \left (x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.06, size = 42, normalized size = 1.56 \begin {gather*} \frac {2 \, x^{2} e^{\frac {1}{3}} + x^{2} - {\left (x^{2} + 5 \, x\right )} \log \left (x^{2}\right )}{2 \, x e^{\frac {1}{3}} - {\left (x + 5\right )} \log \left (x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.39, size = 49, normalized size = 1.81 \begin {gather*} \frac {2 \, x^{2} e^{\frac {1}{3}} - x^{2} \log \left (x^{2}\right ) + x^{2} - 5 \, x \log \left (x^{2}\right )}{2 \, x e^{\frac {1}{3}} - x \log \left (x^{2}\right ) - 5 \, \log \left (x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 28, normalized size = 1.04
method | result | size |
risch | \(x +\frac {x^{2}}{2 x \,{\mathrm e}^{\frac {1}{3}}-x \ln \left (x^{2}\right )-5 \ln \left (x^{2}\right )}\) | \(28\) |
norman | \(\frac {25 \ln \left (x^{2}\right )-10 x \,{\mathrm e}^{\frac {1}{3}}+\left (2 \,{\mathrm e}^{\frac {1}{3}}+1\right ) x^{2}-x^{2} \ln \left (x^{2}\right )}{2 x \,{\mathrm e}^{\frac {1}{3}}-x \ln \left (x^{2}\right )-5 \ln \left (x^{2}\right )}\) | \(54\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.54, size = 73, normalized size = 2.70 \begin {gather*} \frac {25\,\ln \left (x^2\right )\,{\mathrm {e}}^{1/3}+10\,x\,\ln \left (x^2\right )-10\,x\,{\mathrm {e}}^{2/3}+2\,x^2\,\ln \left (x^2\right )-4\,x^2\,{\mathrm {e}}^{1/3}-2\,x^2+5\,x\,\ln \left (x^2\right )\,{\mathrm {e}}^{1/3}}{2\,\left (5\,\ln \left (x^2\right )+x\,\ln \left (x^2\right )-2\,x\,{\mathrm {e}}^{1/3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 20, normalized size = 0.74 \begin {gather*} - \frac {x^{2}}{- 2 x e^{\frac {1}{3}} + \left (x + 5\right ) \log {\left (x^{2} \right )}} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________