Optimal. Leaf size=29 \[ -3+\frac {12}{x}-e^5 \left (-x+\frac {2}{3+x}\right )-4 (x+\log (3)) \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 26, normalized size of antiderivative = 0.90, number of steps used = 4, number of rules used = 3, integrand size = 55, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.055, Rules used = {1594, 27, 1620} \begin {gather*} -\left (\left (4-e^5\right ) x\right )-\frac {2 e^5}{x+3}+\frac {12}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 1594
Rule 1620
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-108-72 x-48 x^2-24 x^3-4 x^4+e^5 \left (11 x^2+6 x^3+x^4\right )}{x^2 \left (9+6 x+x^2\right )} \, dx\\ &=\int \frac {-108-72 x-48 x^2-24 x^3-4 x^4+e^5 \left (11 x^2+6 x^3+x^4\right )}{x^2 (3+x)^2} \, dx\\ &=\int \left (-4 \left (1-\frac {e^5}{4}\right )-\frac {12}{x^2}+\frac {2 e^5}{(3+x)^2}\right ) \, dx\\ &=\frac {12}{x}-\left (4-e^5\right ) x-\frac {2 e^5}{3+x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 23, normalized size = 0.79 \begin {gather*} \frac {12}{x}+\left (-4+e^5\right ) x-\frac {2 e^5}{3+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.46, size = 42, normalized size = 1.45 \begin {gather*} -\frac {4 \, x^{3} + 12 \, x^{2} - {\left (x^{3} + 3 \, x^{2} - 2 \, x\right )} e^{5} - 12 \, x - 36}{x^{2} + 3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 28, normalized size = 0.97 \begin {gather*} x e^{5} - 4 \, x - \frac {2 \, {\left (x e^{5} - 6 \, x - 18\right )}}{x^{2} + 3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 23, normalized size = 0.79
method | result | size |
default | \(x \,{\mathrm e}^{5}-4 x -\frac {2 \,{\mathrm e}^{5}}{3+x}+\frac {12}{x}\) | \(23\) |
norman | \(\frac {\left ({\mathrm e}^{5}-4\right ) x^{3}+36+\left (-11 \,{\mathrm e}^{5}+48\right ) x}{\left (3+x \right ) x}\) | \(28\) |
risch | \(x \,{\mathrm e}^{5}-4 x +\frac {\left (-2 \,{\mathrm e}^{5}+12\right ) x +36}{\left (3+x \right ) x}\) | \(28\) |
gosper | \(\frac {x^{3} {\mathrm e}^{5}-4 x^{3}-11 x \,{\mathrm e}^{5}+48 x +36}{x \left (3+x \right )}\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 26, normalized size = 0.90 \begin {gather*} x {\left (e^{5} - 4\right )} - \frac {2 \, {\left (x {\left (e^{5} - 6\right )} - 18\right )}}{x^{2} + 3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.49, size = 27, normalized size = 0.93 \begin {gather*} x\,\left ({\mathrm {e}}^5-4\right )-\frac {x\,\left (2\,{\mathrm {e}}^5-12\right )-36}{x\,\left (x+3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.25, size = 24, normalized size = 0.83 \begin {gather*} - x \left (4 - e^{5}\right ) - \frac {x \left (-12 + 2 e^{5}\right ) - 36}{x^{2} + 3 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________