Optimal. Leaf size=32 \[ e^{5-x-\left (4+x+\frac {x}{2 \log ^2(x)}\right )^2} \log \left (x-x^2\right ) \]
________________________________________________________________________________________
Rubi [F] time = 25.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (-\frac {x^2+\left (16 x+4 x^2\right ) \log ^2(x)+\left (64+36 x+4 x^2\right ) \log ^4(x)}{4 \log ^4(x)}\right ) \left (e^5 \left (-2 x^2+2 x^3\right ) \log \left (x-x^2\right )+e^5 \left (x^2-x^3\right ) \log (x) \log \left (x-x^2\right )+e^5 \left (-16 x+12 x^2+4 x^3\right ) \log ^2(x) \log \left (x-x^2\right )+e^5 \left (8 x-4 x^2-4 x^3\right ) \log ^3(x) \log \left (x-x^2\right )+\log ^5(x) \left (e^5 (-2+4 x)+e^5 \left (18 x-14 x^2-4 x^3\right ) \log \left (x-x^2\right )\right )\right )}{\left (-2 x+2 x^2\right ) \log ^5(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (-\frac {x^2+\left (16 x+4 x^2\right ) \log ^2(x)+\left (64+36 x+4 x^2\right ) \log ^4(x)}{4 \log ^4(x)}\right ) \left (e^5 \left (-2 x^2+2 x^3\right ) \log \left (x-x^2\right )+e^5 \left (x^2-x^3\right ) \log (x) \log \left (x-x^2\right )+e^5 \left (-16 x+12 x^2+4 x^3\right ) \log ^2(x) \log \left (x-x^2\right )+e^5 \left (8 x-4 x^2-4 x^3\right ) \log ^3(x) \log \left (x-x^2\right )+\log ^5(x) \left (e^5 (-2+4 x)+e^5 \left (18 x-14 x^2-4 x^3\right ) \log \left (x-x^2\right )\right )\right )}{x (-2+2 x) \log ^5(x)} \, dx\\ &=\int \frac {\exp \left (-11-9 x-x^2-\frac {x^2}{4 \log ^4(x)}-\frac {x (4+x)}{\log ^2(x)}\right ) \left (-2 (-1+x) x^2 \log (-((-1+x) x))+(-1+x) x^2 \log (x) \log (-((-1+x) x))-4 x \left (-4+3 x+x^2\right ) \log ^2(x) \log (-((-1+x) x))+4 x \left (-2+x+x^2\right ) \log ^3(x) \log (-((-1+x) x))+2 \log ^5(x) \left (1-2 x+x \left (-9+7 x+2 x^2\right ) \log (-((-1+x) x))\right )\right )}{2 (1-x) x \log ^5(x)} \, dx\\ &=\frac {1}{2} \int \frac {\exp \left (-11-9 x-x^2-\frac {x^2}{4 \log ^4(x)}-\frac {x (4+x)}{\log ^2(x)}\right ) \left (-2 (-1+x) x^2 \log (-((-1+x) x))+(-1+x) x^2 \log (x) \log (-((-1+x) x))-4 x \left (-4+3 x+x^2\right ) \log ^2(x) \log (-((-1+x) x))+4 x \left (-2+x+x^2\right ) \log ^3(x) \log (-((-1+x) x))+2 \log ^5(x) \left (1-2 x+x \left (-9+7 x+2 x^2\right ) \log (-((-1+x) x))\right )\right )}{(1-x) x \log ^5(x)} \, dx\\ &=\frac {1}{2} \int \left (\frac {2 \exp \left (-11-9 x-x^2-\frac {x^2}{4 \log ^4(x)}-\frac {x (4+x)}{\log ^2(x)}\right ) (-1+2 x)}{(-1+x) x}+\frac {\exp \left (-11-9 x-x^2-\frac {x^2}{4 \log ^4(x)}-\frac {x (4+x)}{\log ^2(x)}\right ) \left (2 x-x \log (x)+16 \log ^2(x)+4 x \log ^2(x)-8 \log ^3(x)-4 x \log ^3(x)-18 \log ^5(x)-4 x \log ^5(x)\right ) \log ((1-x) x)}{\log ^5(x)}\right ) \, dx\\ &=\frac {1}{2} \int \frac {\exp \left (-11-9 x-x^2-\frac {x^2}{4 \log ^4(x)}-\frac {x (4+x)}{\log ^2(x)}\right ) \left (2 x-x \log (x)+16 \log ^2(x)+4 x \log ^2(x)-8 \log ^3(x)-4 x \log ^3(x)-18 \log ^5(x)-4 x \log ^5(x)\right ) \log ((1-x) x)}{\log ^5(x)} \, dx+\int \frac {\exp \left (-11-9 x-x^2-\frac {x^2}{4 \log ^4(x)}-\frac {x (4+x)}{\log ^2(x)}\right ) (-1+2 x)}{(-1+x) x} \, dx\\ &=\frac {1}{2} \int \left (-18 \exp \left (-11-9 x-x^2-\frac {x^2}{4 \log ^4(x)}-\frac {x (4+x)}{\log ^2(x)}\right ) \log ((1-x) x)-4 \exp \left (-11-9 x-x^2-\frac {x^2}{4 \log ^4(x)}-\frac {x (4+x)}{\log ^2(x)}\right ) x \log ((1-x) x)+\frac {2 \exp \left (-11-9 x-x^2-\frac {x^2}{4 \log ^4(x)}-\frac {x (4+x)}{\log ^2(x)}\right ) x \log ((1-x) x)}{\log ^5(x)}-\frac {\exp \left (-11-9 x-x^2-\frac {x^2}{4 \log ^4(x)}-\frac {x (4+x)}{\log ^2(x)}\right ) x \log ((1-x) x)}{\log ^4(x)}+\frac {16 \exp \left (-11-9 x-x^2-\frac {x^2}{4 \log ^4(x)}-\frac {x (4+x)}{\log ^2(x)}\right ) \log ((1-x) x)}{\log ^3(x)}+\frac {4 \exp \left (-11-9 x-x^2-\frac {x^2}{4 \log ^4(x)}-\frac {x (4+x)}{\log ^2(x)}\right ) x \log ((1-x) x)}{\log ^3(x)}-\frac {8 \exp \left (-11-9 x-x^2-\frac {x^2}{4 \log ^4(x)}-\frac {x (4+x)}{\log ^2(x)}\right ) \log ((1-x) x)}{\log ^2(x)}-\frac {4 \exp \left (-11-9 x-x^2-\frac {x^2}{4 \log ^4(x)}-\frac {x (4+x)}{\log ^2(x)}\right ) x \log ((1-x) x)}{\log ^2(x)}\right ) \, dx+\int \left (\frac {\exp \left (-11-9 x-x^2-\frac {x^2}{4 \log ^4(x)}-\frac {x (4+x)}{\log ^2(x)}\right )}{-1+x}+\frac {\exp \left (-11-9 x-x^2-\frac {x^2}{4 \log ^4(x)}-\frac {x (4+x)}{\log ^2(x)}\right )}{x}\right ) \, dx\\ &=-\left (\frac {1}{2} \int \frac {\exp \left (-11-9 x-x^2-\frac {x^2}{4 \log ^4(x)}-\frac {x (4+x)}{\log ^2(x)}\right ) x \log ((1-x) x)}{\log ^4(x)} \, dx\right )-2 \int \exp \left (-11-9 x-x^2-\frac {x^2}{4 \log ^4(x)}-\frac {x (4+x)}{\log ^2(x)}\right ) x \log ((1-x) x) \, dx+2 \int \frac {\exp \left (-11-9 x-x^2-\frac {x^2}{4 \log ^4(x)}-\frac {x (4+x)}{\log ^2(x)}\right ) x \log ((1-x) x)}{\log ^3(x)} \, dx-2 \int \frac {\exp \left (-11-9 x-x^2-\frac {x^2}{4 \log ^4(x)}-\frac {x (4+x)}{\log ^2(x)}\right ) x \log ((1-x) x)}{\log ^2(x)} \, dx-4 \int \frac {\exp \left (-11-9 x-x^2-\frac {x^2}{4 \log ^4(x)}-\frac {x (4+x)}{\log ^2(x)}\right ) \log ((1-x) x)}{\log ^2(x)} \, dx+8 \int \frac {\exp \left (-11-9 x-x^2-\frac {x^2}{4 \log ^4(x)}-\frac {x (4+x)}{\log ^2(x)}\right ) \log ((1-x) x)}{\log ^3(x)} \, dx-9 \int \exp \left (-11-9 x-x^2-\frac {x^2}{4 \log ^4(x)}-\frac {x (4+x)}{\log ^2(x)}\right ) \log ((1-x) x) \, dx+\int \frac {\exp \left (-11-9 x-x^2-\frac {x^2}{4 \log ^4(x)}-\frac {x (4+x)}{\log ^2(x)}\right )}{-1+x} \, dx+\int \frac {\exp \left (-11-9 x-x^2-\frac {x^2}{4 \log ^4(x)}-\frac {x (4+x)}{\log ^2(x)}\right )}{x} \, dx+\int \frac {\exp \left (-11-9 x-x^2-\frac {x^2}{4 \log ^4(x)}-\frac {x (4+x)}{\log ^2(x)}\right ) x \log ((1-x) x)}{\log ^5(x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.26, size = 41, normalized size = 1.28 \begin {gather*} e^{-11-9 x-x^2-\frac {x^2}{4 \log ^4(x)}-\frac {x (4+x)}{\log ^2(x)}} \log (-((-1+x) x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 49, normalized size = 1.53 \begin {gather*} e^{\left (-\frac {4 \, {\left (x^{2} + 9 \, x + 16\right )} \log \relax (x)^{4} + 4 \, {\left (x^{2} + 4 \, x\right )} \log \relax (x)^{2} + x^{2}}{4 \, \log \relax (x)^{4}} + 5\right )} \log \left (-x^{2} + x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {undef} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.36, size = 172, normalized size = 5.38
method | result | size |
risch | \(\left (-i \pi \,{\mathrm e}^{5} \mathrm {csgn}\left (i x \left (x -1\right )\right )^{2}-\frac {i \pi \,{\mathrm e}^{5} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left (x -1\right )\right ) \mathrm {csgn}\left (i x \left (x -1\right )\right )}{2}+\frac {i \pi \,{\mathrm e}^{5} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \left (x -1\right )\right )^{2}}{2}+\frac {i \pi \,{\mathrm e}^{5} \mathrm {csgn}\left (i \left (x -1\right )\right ) \mathrm {csgn}\left (i x \left (x -1\right )\right )^{2}}{2}+\frac {i \pi \,{\mathrm e}^{5} \mathrm {csgn}\left (i x \left (x -1\right )\right )^{3}}{2}+i \pi \,{\mathrm e}^{5}+{\mathrm e}^{5} \ln \relax (x )+{\mathrm e}^{5} \ln \left (x -1\right )\right ) {\mathrm e}^{-\frac {4 x^{2} \ln \relax (x )^{4}+36 x \ln \relax (x )^{4}+64 \ln \relax (x )^{4}+4 x^{2} \ln \relax (x )^{2}+16 x \ln \relax (x )^{2}+x^{2}}{4 \ln \relax (x )^{4}}}\) | \(172\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.65, size = 46, normalized size = 1.44 \begin {gather*} {\left (\log \relax (x) + \log \left (-x + 1\right )\right )} e^{\left (-x^{2} - 9 \, x - \frac {x^{2}}{\log \relax (x)^{2}} - \frac {4 \, x}{\log \relax (x)^{2}} - \frac {x^{2}}{4 \, \log \relax (x)^{4}} - 11\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {{\mathrm {e}}^{-\frac {\frac {{\ln \relax (x)}^2\,\left (4\,x^2+16\,x\right )}{4}+\frac {{\ln \relax (x)}^4\,\left (4\,x^2+36\,x+64\right )}{4}+\frac {x^2}{4}}{{\ln \relax (x)}^4}}\,\left (\left ({\mathrm {e}}^5\,\left (4\,x-2\right )-{\mathrm {e}}^5\,\ln \left (x-x^2\right )\,\left (4\,x^3+14\,x^2-18\,x\right )\right )\,{\ln \relax (x)}^5-{\mathrm {e}}^5\,\ln \left (x-x^2\right )\,\left (4\,x^3+4\,x^2-8\,x\right )\,{\ln \relax (x)}^3+{\mathrm {e}}^5\,\ln \left (x-x^2\right )\,\left (4\,x^3+12\,x^2-16\,x\right )\,{\ln \relax (x)}^2+{\mathrm {e}}^5\,\ln \left (x-x^2\right )\,\left (x^2-x^3\right )\,\ln \relax (x)-{\mathrm {e}}^5\,\ln \left (x-x^2\right )\,\left (2\,x^2-2\,x^3\right )\right )}{{\ln \relax (x)}^5\,\left (2\,x-2\,x^2\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________