Optimal. Leaf size=24 \[ \frac {\left (x^2\right )^{-\left (-x+\log \left ((2+5 x)^2\right )\right )^2}}{x} \]
________________________________________________________________________________________
Rubi [B] time = 1.51, antiderivative size = 247, normalized size of antiderivative = 10.29, number of steps used = 2, number of rules used = 2, integrand size = 148, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.014, Rules used = {1593, 2288} \begin {gather*} \frac {\left (x^2\right )^{-x^2-\log ^2\left (25 x^2+20 x+4\right )+2 x \log \left (25 x^2+20 x+4\right )-1} \left (5 x^3+2 x^2+(5 x+2) \log ^2\left (25 x^2+20 x+4\right )-\left (10 x^2-\left (8 x-5 x^2\right ) \log \left (x^2\right )+4 x\right ) \log \left (25 x^2+20 x+4\right )-\left (8 x^2-5 x^3\right ) \log \left (x^2\right )\right )}{(5 x+2) \left (\frac {\log ^2\left (25 x^2+20 x+4\right )}{x}+\frac {10 (5 x+2) \log \left (x^2\right ) \log \left (25 x^2+20 x+4\right )}{25 x^2+20 x+4}-\log \left (x^2\right ) \log \left (25 x^2+20 x+4\right )-2 \log \left (25 x^2+20 x+4\right )+x \log \left (x^2\right )-\frac {10 x (5 x+2) \log \left (x^2\right )}{25 x^2+20 x+4}+x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (-x^2 \log \left (x^2\right )+2 x \log \left (x^2\right ) \log \left (4+20 x+25 x^2\right )-\log \left (x^2\right ) \log ^2\left (4+20 x+25 x^2\right )\right ) \left (-2-5 x-4 x^2-10 x^3+\left (16 x^2-10 x^3\right ) \log \left (x^2\right )+\left (8 x+20 x^2+\left (-16 x+10 x^2\right ) \log \left (x^2\right )\right ) \log \left (4+20 x+25 x^2\right )+(-4-10 x) \log ^2\left (4+20 x+25 x^2\right )\right )}{x^2 (2+5 x)} \, dx\\ &=\frac {\left (x^2\right )^{-1-x^2+2 x \log \left (4+20 x+25 x^2\right )-\log ^2\left (4+20 x+25 x^2\right )} \left (2 x^2+5 x^3-\left (8 x^2-5 x^3\right ) \log \left (x^2\right )-\left (4 x+10 x^2-\left (8 x-5 x^2\right ) \log \left (x^2\right )\right ) \log \left (4+20 x+25 x^2\right )+(2+5 x) \log ^2\left (4+20 x+25 x^2\right )\right )}{(2+5 x) \left (x+x \log \left (x^2\right )-\frac {10 x (2+5 x) \log \left (x^2\right )}{4+20 x+25 x^2}-2 \log \left (4+20 x+25 x^2\right )-\log \left (x^2\right ) \log \left (4+20 x+25 x^2\right )+\frac {10 (2+5 x) \log \left (x^2\right ) \log \left (4+20 x+25 x^2\right )}{4+20 x+25 x^2}+\frac {\log ^2\left (4+20 x+25 x^2\right )}{x}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 24, normalized size = 1.00 \begin {gather*} \frac {\left (x^2\right )^{-\left (x-\log \left ((2+5 x)^2\right )\right )^2}}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.62, size = 52, normalized size = 2.17 \begin {gather*} \frac {e^{\left (-x^{2} \log \left (x^{2}\right ) + 2 \, x \log \left (25 \, x^{2} + 20 \, x + 4\right ) \log \left (x^{2}\right ) - \log \left (25 \, x^{2} + 20 \, x + 4\right )^{2} \log \left (x^{2}\right )\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 3.37, size = 52, normalized size = 2.17 \begin {gather*} \frac {e^{\left (-x^{2} \log \left (x^{2}\right ) + 2 \, x \log \left (25 \, x^{2} + 20 \, x + 4\right ) \log \left (x^{2}\right ) - \log \left (25 \, x^{2} + 20 \, x + 4\right )^{2} \log \left (x^{2}\right )\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.34, size = 133, normalized size = 5.54
method | result | size |
risch | \(\frac {{\mathrm e}^{-\frac {\left (-i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \pi \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (i x \right )-i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x \right )^{2}+4 \ln \relax (x )\right ) \left (i \pi \mathrm {csgn}\left (i \left (x +\frac {2}{5}\right )^{2}\right )^{3}-2 i \pi \mathrm {csgn}\left (i \left (x +\frac {2}{5}\right )^{2}\right )^{2} \mathrm {csgn}\left (i \left (x +\frac {2}{5}\right )\right )+i \pi \,\mathrm {csgn}\left (i \left (x +\frac {2}{5}\right )^{2}\right ) \mathrm {csgn}\left (i \left (x +\frac {2}{5}\right )\right )^{2}-4 \ln \left (x +\frac {2}{5}\right )+2 x \right )^{2}}{8}}}{x}\) | \(133\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 36, normalized size = 1.50 \begin {gather*} \frac {e^{\left (-2 \, x^{2} \log \relax (x) + 8 \, x \log \left (5 \, x + 2\right ) \log \relax (x) - 8 \, \log \left (5 \, x + 2\right )^{2} \log \relax (x)\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.84, size = 50, normalized size = 2.08 \begin {gather*} \frac {{\left (x^2\right )}^{2\,x\,\ln \left (25\,x^2+20\,x+4\right )}}{x\,{\left (x^2\right )}^{x^2}\,{\left (x^2\right )}^{{\ln \left (25\,x^2+20\,x+4\right )}^2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.69, size = 49, normalized size = 2.04 \begin {gather*} \frac {e^{- x^{2} \log {\left (x^{2} \right )} + 2 x \log {\left (x^{2} \right )} \log {\left (25 x^{2} + 20 x + 4 \right )} - \log {\left (x^{2} \right )} \log {\left (25 x^{2} + 20 x + 4 \right )}^{2}}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________