Optimal. Leaf size=33 \[ \frac {e^{\frac {x \left (2 x+x^2+\frac {x}{1+2 x}\right )}{4 \log \left (x^2\right )}}}{x^2} \]
________________________________________________________________________________________
Rubi [B] time = 1.27, antiderivative size = 197, normalized size of antiderivative = 5.97, number of steps used = 4, number of rules used = 4, integrand size = 121, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.033, Rules used = {1594, 27, 12, 2288} \begin {gather*} \frac {\left (8 x^5+24 x^4+22 x^3+6 x^2-\left (12 x^5+28 x^4+21 x^3+6 x^2\right ) \log \left (x^2\right )\right ) \exp \left (\frac {2 x^4+5 x^3+3 x^2}{4 (2 x+1) \log \left (x^2\right )}\right )}{x^3 (2 x+1)^2 \left (-\frac {8 x^3+15 x^2+6 x}{(2 x+1) \log \left (x^2\right )}+\frac {2 \left (2 x^4+5 x^3+3 x^2\right )}{x (2 x+1) \log ^2\left (x^2\right )}+\frac {2 \left (2 x^4+5 x^3+3 x^2\right )}{(2 x+1)^2 \log \left (x^2\right )}\right ) \log ^2\left (x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 1594
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {3 x^2+5 x^3+2 x^4}{(4+8 x) \log \left (x^2\right )}} \left (-6 x^2-22 x^3-24 x^4-8 x^5+\left (6 x^2+21 x^3+28 x^4+12 x^5\right ) \log \left (x^2\right )+\left (-8-32 x-32 x^2\right ) \log ^2\left (x^2\right )\right )}{x^3 \left (4+16 x+16 x^2\right ) \log ^2\left (x^2\right )} \, dx\\ &=\int \frac {e^{\frac {3 x^2+5 x^3+2 x^4}{(4+8 x) \log \left (x^2\right )}} \left (-6 x^2-22 x^3-24 x^4-8 x^5+\left (6 x^2+21 x^3+28 x^4+12 x^5\right ) \log \left (x^2\right )+\left (-8-32 x-32 x^2\right ) \log ^2\left (x^2\right )\right )}{4 x^3 (1+2 x)^2 \log ^2\left (x^2\right )} \, dx\\ &=\frac {1}{4} \int \frac {e^{\frac {3 x^2+5 x^3+2 x^4}{(4+8 x) \log \left (x^2\right )}} \left (-6 x^2-22 x^3-24 x^4-8 x^5+\left (6 x^2+21 x^3+28 x^4+12 x^5\right ) \log \left (x^2\right )+\left (-8-32 x-32 x^2\right ) \log ^2\left (x^2\right )\right )}{x^3 (1+2 x)^2 \log ^2\left (x^2\right )} \, dx\\ &=\frac {\exp \left (\frac {3 x^2+5 x^3+2 x^4}{4 (1+2 x) \log \left (x^2\right )}\right ) \left (6 x^2+22 x^3+24 x^4+8 x^5-\left (6 x^2+21 x^3+28 x^4+12 x^5\right ) \log \left (x^2\right )\right )}{x^3 (1+2 x)^2 \left (\frac {2 \left (3 x^2+5 x^3+2 x^4\right )}{x (1+2 x) \log ^2\left (x^2\right )}-\frac {6 x+15 x^2+8 x^3}{(1+2 x) \log \left (x^2\right )}+\frac {2 \left (3 x^2+5 x^3+2 x^4\right )}{(1+2 x)^2 \log \left (x^2\right )}\right ) \log ^2\left (x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 36, normalized size = 1.09 \begin {gather*} \frac {e^{\frac {x^2 \left (3+5 x+2 x^2\right )}{4 (1+2 x) \log \left (x^2\right )}}}{x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 36, normalized size = 1.09 \begin {gather*} \frac {e^{\left (\frac {2 \, x^{4} + 5 \, x^{3} + 3 \, x^{2}}{4 \, {\left (2 \, x + 1\right )} \log \left (x^{2}\right )}\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.47, size = 37, normalized size = 1.12 \begin {gather*} \frac {e^{\left (\frac {2 \, x^{4} + 5 \, x^{3} + 3 \, x^{2}}{4 \, {\left (2 \, x \log \left (x^{2}\right ) + \log \left (x^{2}\right )\right )}}\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 32, normalized size = 0.97
method | result | size |
risch | \(\frac {{\mathrm e}^{\frac {x^{2} \left (2 x +3\right ) \left (x +1\right )}{4 \left (2 x +1\right ) \ln \left (x^{2}\right )}}}{x^{2}}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.83, size = 69, normalized size = 2.09 \begin {gather*} \frac {{\mathrm {e}}^{\frac {x^4}{2\,\left (\ln \left (x^2\right )+2\,x\,\ln \left (x^2\right )\right )}}\,{\mathrm {e}}^{\frac {3\,x^2}{4\,\left (\ln \left (x^2\right )+2\,x\,\ln \left (x^2\right )\right )}}\,{\mathrm {e}}^{\frac {5\,x^3}{4\,\left (\ln \left (x^2\right )+2\,x\,\ln \left (x^2\right )\right )}}}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.60, size = 29, normalized size = 0.88 \begin {gather*} \frac {e^{\frac {2 x^{4} + 5 x^{3} + 3 x^{2}}{\left (8 x + 4\right ) \log {\left (x^{2} \right )}}}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________