Optimal. Leaf size=31 \[ \left (6-\frac {\log (x)}{x \left (-\frac {x^2}{\log (4)}+\log (5-x)\right )}\right ) \log (\log (2)) \]
________________________________________________________________________________________
Rubi [F] time = 15.01, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (\left (-5 x^2+x^3\right ) \log (4)+(5-x) \log ^2(4) \log (5-x)+\left (\left (15 x^2-3 x^3\right ) \log (4)+x \log ^2(4)+(-5+x) \log ^2(4) \log (5-x)\right ) \log (x)\right ) \log (\log (2))}{-5 x^6+x^7+\left (10 x^4-2 x^5\right ) \log (4) \log (5-x)+\left (-5 x^2+x^3\right ) \log ^2(4) \log ^2(5-x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\log (\log (2)) \int \frac {\left (-5 x^2+x^3\right ) \log (4)+(5-x) \log ^2(4) \log (5-x)+\left (\left (15 x^2-3 x^3\right ) \log (4)+x \log ^2(4)+(-5+x) \log ^2(4) \log (5-x)\right ) \log (x)}{-5 x^6+x^7+\left (10 x^4-2 x^5\right ) \log (4) \log (5-x)+\left (-5 x^2+x^3\right ) \log ^2(4) \log ^2(5-x)} \, dx\\ &=\log (\log (2)) \int \frac {\log (4) \left (-((-5+x) \log (4) \log (5-x) (-1+\log (x)))-x \left ((-5+x) x+\left (15 x-3 x^2+\log (4)\right ) \log (x)\right )\right )}{(5-x) \left (x^3-x \log (4) \log (5-x)\right )^2} \, dx\\ &=(\log (4) \log (\log (2))) \int \frac {-((-5+x) \log (4) \log (5-x) (-1+\log (x)))-x \left ((-5+x) x+\left (15 x-3 x^2+\log (4)\right ) \log (x)\right )}{(5-x) \left (x^3-x \log (4) \log (5-x)\right )^2} \, dx\\ &=(\log (4) \log (\log (2))) \int \left (\frac {1}{x^2 \left (x^2-\log (4) \log (5-x)\right )}-\frac {\left (-15 x^2+3 x^3-x \log (4)+5 \log (4) \log (5-x)-x \log (4) \log (5-x)\right ) \log (x)}{(-5+x) x^2 \left (x^2-\log (4) \log (5-x)\right )^2}\right ) \, dx\\ &=(\log (4) \log (\log (2))) \int \frac {1}{x^2 \left (x^2-\log (4) \log (5-x)\right )} \, dx-(\log (4) \log (\log (2))) \int \frac {\left (-15 x^2+3 x^3-x \log (4)+5 \log (4) \log (5-x)-x \log (4) \log (5-x)\right ) \log (x)}{(-5+x) x^2 \left (x^2-\log (4) \log (5-x)\right )^2} \, dx\\ &=(\log (4) \log (\log (2))) \int \frac {1}{x^2 \left (x^2-\log (4) \log (5-x)\right )} \, dx-(\log (4) \log (\log (2))) \int \left (\frac {\left (-15 x^2+3 x^3-x \log (4)+5 \log (4) \log (5-x)-x \log (4) \log (5-x)\right ) \log (x)}{25 (-5+x) \left (x^2-\log (4) \log (5-x)\right )^2}-\frac {\left (-15 x^2+3 x^3-x \log (4)+5 \log (4) \log (5-x)-x \log (4) \log (5-x)\right ) \log (x)}{5 x^2 \left (x^2-\log (4) \log (5-x)\right )^2}-\frac {\left (-15 x^2+3 x^3-x \log (4)+5 \log (4) \log (5-x)-x \log (4) \log (5-x)\right ) \log (x)}{25 x \left (x^2-\log (4) \log (5-x)\right )^2}\right ) \, dx\\ &=-\left (\frac {1}{25} (\log (4) \log (\log (2))) \int \frac {\left (-15 x^2+3 x^3-x \log (4)+5 \log (4) \log (5-x)-x \log (4) \log (5-x)\right ) \log (x)}{(-5+x) \left (x^2-\log (4) \log (5-x)\right )^2} \, dx\right )+\frac {1}{25} (\log (4) \log (\log (2))) \int \frac {\left (-15 x^2+3 x^3-x \log (4)+5 \log (4) \log (5-x)-x \log (4) \log (5-x)\right ) \log (x)}{x \left (x^2-\log (4) \log (5-x)\right )^2} \, dx+\frac {1}{5} (\log (4) \log (\log (2))) \int \frac {\left (-15 x^2+3 x^3-x \log (4)+5 \log (4) \log (5-x)-x \log (4) \log (5-x)\right ) \log (x)}{x^2 \left (x^2-\log (4) \log (5-x)\right )^2} \, dx+(\log (4) \log (\log (2))) \int \frac {1}{x^2 \left (x^2-\log (4) \log (5-x)\right )} \, dx\\ &=-\left (\frac {1}{25} (\log (4) \log (\log (2))) \int \left (-\frac {15 x^2 \log (x)}{(-5+x) \left (x^2-\log (4) \log (5-x)\right )^2}+\frac {3 x^3 \log (x)}{(-5+x) \left (x^2-\log (4) \log (5-x)\right )^2}-\frac {x \log (4) \log (x)}{(-5+x) \left (x^2-\log (4) \log (5-x)\right )^2}+\frac {5 \log (4) \log (5-x) \log (x)}{(-5+x) \left (x^2-\log (4) \log (5-x)\right )^2}-\frac {x \log (4) \log (5-x) \log (x)}{(-5+x) \left (x^2-\log (4) \log (5-x)\right )^2}\right ) \, dx\right )+\frac {1}{25} (\log (4) \log (\log (2))) \int \left (-\frac {15 x \log (x)}{\left (x^2-\log (4) \log (5-x)\right )^2}+\frac {3 x^2 \log (x)}{\left (x^2-\log (4) \log (5-x)\right )^2}-\frac {\log (4) \log (x)}{\left (x^2-\log (4) \log (5-x)\right )^2}+\frac {5 \log (4) \log (5-x) \log (x)}{x \left (x^2-\log (4) \log (5-x)\right )^2}-\frac {\log (4) \log (5-x) \log (x)}{\left (-x^2+\log (4) \log (5-x)\right )^2}\right ) \, dx+\frac {1}{5} (\log (4) \log (\log (2))) \int \left (-\frac {15 \log (x)}{\left (x^2-\log (4) \log (5-x)\right )^2}+\frac {3 x \log (x)}{\left (x^2-\log (4) \log (5-x)\right )^2}-\frac {\log (4) \log (x)}{x \left (x^2-\log (4) \log (5-x)\right )^2}-\frac {\log (4) \log (5-x) \log (x)}{x \left (x^2-\log (4) \log (5-x)\right )^2}+\frac {5 \log (4) \log (5-x) \log (x)}{x^2 \left (-x^2+\log (4) \log (5-x)\right )^2}\right ) \, dx+(\log (4) \log (\log (2))) \int \frac {1}{x^2 \left (x^2-\log (4) \log (5-x)\right )} \, dx\\ &=\frac {1}{25} (3 \log (4) \log (\log (2))) \int \frac {x^2 \log (x)}{\left (x^2-\log (4) \log (5-x)\right )^2} \, dx-\frac {1}{25} (3 \log (4) \log (\log (2))) \int \frac {x^3 \log (x)}{(-5+x) \left (x^2-\log (4) \log (5-x)\right )^2} \, dx+\frac {1}{5} (3 \log (4) \log (\log (2))) \int \frac {x^2 \log (x)}{(-5+x) \left (x^2-\log (4) \log (5-x)\right )^2} \, dx+(\log (4) \log (\log (2))) \int \frac {1}{x^2 \left (x^2-\log (4) \log (5-x)\right )} \, dx-(3 \log (4) \log (\log (2))) \int \frac {\log (x)}{\left (x^2-\log (4) \log (5-x)\right )^2} \, dx-\frac {1}{25} \left (\log ^2(4) \log (\log (2))\right ) \int \frac {\log (x)}{\left (x^2-\log (4) \log (5-x)\right )^2} \, dx+\frac {1}{25} \left (\log ^2(4) \log (\log (2))\right ) \int \frac {x \log (x)}{(-5+x) \left (x^2-\log (4) \log (5-x)\right )^2} \, dx+\frac {1}{25} \left (\log ^2(4) \log (\log (2))\right ) \int \frac {x \log (5-x) \log (x)}{(-5+x) \left (x^2-\log (4) \log (5-x)\right )^2} \, dx-\frac {1}{25} \left (\log ^2(4) \log (\log (2))\right ) \int \frac {\log (5-x) \log (x)}{\left (-x^2+\log (4) \log (5-x)\right )^2} \, dx-\frac {1}{5} \left (\log ^2(4) \log (\log (2))\right ) \int \frac {\log (x)}{x \left (x^2-\log (4) \log (5-x)\right )^2} \, dx-\frac {1}{5} \left (\log ^2(4) \log (\log (2))\right ) \int \frac {\log (5-x) \log (x)}{(-5+x) \left (x^2-\log (4) \log (5-x)\right )^2} \, dx+\left (\log ^2(4) \log (\log (2))\right ) \int \frac {\log (5-x) \log (x)}{x^2 \left (-x^2+\log (4) \log (5-x)\right )^2} \, dx\\ &=\frac {1}{25} (3 \log (4) \log (\log (2))) \int \frac {x^2 \log (x)}{\left (x^2-\log (4) \log (5-x)\right )^2} \, dx-\frac {1}{25} (3 \log (4) \log (\log (2))) \int \left (\frac {25 \log (x)}{\left (x^2-\log (4) \log (5-x)\right )^2}+\frac {125 \log (x)}{(-5+x) \left (x^2-\log (4) \log (5-x)\right )^2}+\frac {5 x \log (x)}{\left (x^2-\log (4) \log (5-x)\right )^2}+\frac {x^2 \log (x)}{\left (x^2-\log (4) \log (5-x)\right )^2}\right ) \, dx+\frac {1}{5} (3 \log (4) \log (\log (2))) \int \left (\frac {5 \log (x)}{\left (x^2-\log (4) \log (5-x)\right )^2}+\frac {25 \log (x)}{(-5+x) \left (x^2-\log (4) \log (5-x)\right )^2}+\frac {x \log (x)}{\left (x^2-\log (4) \log (5-x)\right )^2}\right ) \, dx+(\log (4) \log (\log (2))) \int \frac {1}{x^2 \left (x^2-\log (4) \log (5-x)\right )} \, dx-(3 \log (4) \log (\log (2))) \int \frac {\log (x)}{\left (x^2-\log (4) \log (5-x)\right )^2} \, dx-\frac {1}{25} \left (\log ^2(4) \log (\log (2))\right ) \int \frac {\log (x)}{\left (x^2-\log (4) \log (5-x)\right )^2} \, dx-\frac {1}{25} \left (\log ^2(4) \log (\log (2))\right ) \int \frac {\log (5-x) \log (x)}{\left (-x^2+\log (4) \log (5-x)\right )^2} \, dx+\frac {1}{25} \left (\log ^2(4) \log (\log (2))\right ) \int \left (\frac {\log (x)}{\left (x^2-\log (4) \log (5-x)\right )^2}+\frac {5 \log (x)}{(-5+x) \left (x^2-\log (4) \log (5-x)\right )^2}\right ) \, dx+\frac {1}{25} \left (\log ^2(4) \log (\log (2))\right ) \int \left (\frac {\log (5-x) \log (x)}{\left (x^2-\log (4) \log (5-x)\right )^2}+\frac {5 \log (5-x) \log (x)}{(-5+x) \left (x^2-\log (4) \log (5-x)\right )^2}\right ) \, dx-\frac {1}{5} \left (\log ^2(4) \log (\log (2))\right ) \int \frac {\log (x)}{x \left (x^2-\log (4) \log (5-x)\right )^2} \, dx-\frac {1}{5} \left (\log ^2(4) \log (\log (2))\right ) \int \frac {\log (5-x) \log (x)}{(-5+x) \left (x^2-\log (4) \log (5-x)\right )^2} \, dx+\left (\log ^2(4) \log (\log (2))\right ) \int \frac {\log (5-x) \log (x)}{x^2 \left (-x^2+\log (4) \log (5-x)\right )^2} \, dx\\ &=(\log (4) \log (\log (2))) \int \frac {1}{x^2 \left (x^2-\log (4) \log (5-x)\right )} \, dx-(3 \log (4) \log (\log (2))) \int \frac {\log (x)}{\left (x^2-\log (4) \log (5-x)\right )^2} \, dx+\frac {1}{25} \left (\log ^2(4) \log (\log (2))\right ) \int \frac {\log (5-x) \log (x)}{\left (x^2-\log (4) \log (5-x)\right )^2} \, dx-\frac {1}{25} \left (\log ^2(4) \log (\log (2))\right ) \int \frac {\log (5-x) \log (x)}{\left (-x^2+\log (4) \log (5-x)\right )^2} \, dx+\frac {1}{5} \left (\log ^2(4) \log (\log (2))\right ) \int \frac {\log (x)}{(-5+x) \left (x^2-\log (4) \log (5-x)\right )^2} \, dx-\frac {1}{5} \left (\log ^2(4) \log (\log (2))\right ) \int \frac {\log (x)}{x \left (x^2-\log (4) \log (5-x)\right )^2} \, dx+\left (\log ^2(4) \log (\log (2))\right ) \int \frac {\log (5-x) \log (x)}{x^2 \left (-x^2+\log (4) \log (5-x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.05, size = 25, normalized size = 0.81 \begin {gather*} \frac {\log (4) \log (x) \log (\log (2))}{x^3-x \log (4) \log (5-x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 26, normalized size = 0.84 \begin {gather*} \frac {2 \, \log \relax (2) \log \relax (x) \log \left (\log \relax (2)\right )}{x^{3} - 2 \, x \log \relax (2) \log \left (-x + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.30, size = 26, normalized size = 0.84 \begin {gather*} \frac {2 \, \log \relax (2) \log \relax (x) \log \left (\log \relax (2)\right )}{x^{3} - 2 \, x \log \relax (2) \log \left (-x + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 31, normalized size = 1.00
method | result | size |
risch | \(-\frac {2 \ln \left (\ln \relax (2)\right ) \ln \relax (2) \ln \relax (x )}{x \left (2 \ln \relax (2) \ln \left (5-x \right )-x^{2}\right )}\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 26, normalized size = 0.84 \begin {gather*} \frac {2 \, \log \relax (2) \log \relax (x) \log \left (\log \relax (2)\right )}{x^{3} - 2 \, x \log \relax (2) \log \left (-x + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {\ln \left (\ln \relax (2)\right )\,\left (2\,\ln \relax (2)\,\left (5\,x^2-x^3\right )-\ln \relax (x)\,\left (2\,\ln \relax (2)\,\left (15\,x^2-3\,x^3\right )+4\,x\,{\ln \relax (2)}^2+4\,{\ln \relax (2)}^2\,\ln \left (5-x\right )\,\left (x-5\right )\right )+4\,{\ln \relax (2)}^2\,\ln \left (5-x\right )\,\left (x-5\right )\right )}{5\,x^6-x^7-2\,\ln \relax (2)\,\ln \left (5-x\right )\,\left (10\,x^4-2\,x^5\right )+4\,{\ln \relax (2)}^2\,{\ln \left (5-x\right )}^2\,\left (5\,x^2-x^3\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 29, normalized size = 0.94 \begin {gather*} - \frac {2 \log {\relax (2 )} \log {\relax (x )} \log {\left (\log {\relax (2 )} \right )}}{- x^{3} + 2 x \log {\relax (2 )} \log {\left (5 - x \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________