Optimal. Leaf size=23 \[ \left (4-e^{e^{-2+\frac {e^{-x^5}}{x}}}\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 1.16, antiderivative size = 23, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 124, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.024, Rules used = {6688, 12, 6686} \begin {gather*} \left (4-e^{e^{\frac {e^{-x^5}}{x}-2}}\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e^{-2+e^{-2+\frac {e^{-x^5}}{x}}+\frac {e^{-x^5}}{x}-x^5} \left (4-e^{e^{-2+\frac {e^{-x^5}}{x}}}\right ) \left (1+5 x^5\right )}{x^2} \, dx\\ &=2 \int \frac {e^{-2+e^{-2+\frac {e^{-x^5}}{x}}+\frac {e^{-x^5}}{x}-x^5} \left (4-e^{e^{-2+\frac {e^{-x^5}}{x}}}\right ) \left (1+5 x^5\right )}{x^2} \, dx\\ &=\left (4-e^{e^{-2+\frac {e^{-x^5}}{x}}}\right )^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.42, size = 21, normalized size = 0.91 \begin {gather*} \left (-4+e^{e^{-2+\frac {e^{-x^5}}{x}}}\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.63, size = 141, normalized size = 6.13 \begin {gather*} {\left (e^{\left (\frac {2 \, {\left (x e^{\left (x^{5} - \frac {{\left (2 \, x e^{\left (x^{5}\right )} - 1\right )} e^{\left (-x^{5}\right )}}{x}\right )} - 2 \, x e^{\left (x^{5}\right )} + 1\right )} e^{\left (-x^{5}\right )}}{x}\right )} - 8 \, e^{\left (\frac {{\left (x e^{\left (x^{5} - \frac {{\left (2 \, x e^{\left (x^{5}\right )} - 1\right )} e^{\left (-x^{5}\right )}}{x}\right )} - 2 \, x e^{\left (x^{5}\right )} + 1\right )} e^{\left (-x^{5}\right )}}{x} - \frac {{\left (2 \, x e^{\left (x^{5}\right )} - 1\right )} e^{\left (-x^{5}\right )}}{x}\right )}\right )} e^{\left (\frac {2 \, {\left (2 \, x e^{\left (x^{5}\right )} - 1\right )} e^{\left (-x^{5}\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 33, normalized size = 1.43 \begin {gather*} e^{\left (2 \, e^{\left (\frac {e^{\left (-x^{5}\right )}}{x} - 2\right )}\right )} - 8 \, e^{\left (e^{\left (\frac {e^{\left (-x^{5}\right )}}{x} - 2\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.12, size = 50, normalized size = 2.17
method | result | size |
risch | \({\mathrm e}^{2 \,{\mathrm e}^{-\frac {\left (2 x \,{\mathrm e}^{x^{5}}-1\right ) {\mathrm e}^{-x^{5}}}{x}}}-8 \,{\mathrm e}^{{\mathrm e}^{-\frac {\left (2 x \,{\mathrm e}^{x^{5}}-1\right ) {\mathrm e}^{-x^{5}}}{x}}}\) | \(50\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.54, size = 33, normalized size = 1.43 \begin {gather*} e^{\left (2 \, e^{\left (\frac {e^{\left (-x^{5}\right )}}{x} - 2\right )}\right )} - 8 \, e^{\left (e^{\left (\frac {e^{\left (-x^{5}\right )}}{x} - 2\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.65, size = 33, normalized size = 1.43 \begin {gather*} {\mathrm {e}}^{{\mathrm {e}}^{\frac {{\mathrm {e}}^{-x^5}}{x}}\,{\mathrm {e}}^{-2}}\,\left ({\mathrm {e}}^{{\mathrm {e}}^{\frac {{\mathrm {e}}^{-x^5}}{x}}\,{\mathrm {e}}^{-2}}-8\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.73, size = 42, normalized size = 1.83 \begin {gather*} e^{2 e^{\frac {\left (- 2 x e^{x^{5}} + 1\right ) e^{- x^{5}}}{x}}} - 8 e^{e^{\frac {\left (- 2 x e^{x^{5}} + 1\right ) e^{- x^{5}}}{x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________