Optimal. Leaf size=27 \[ x+\frac {8}{2+2 x+x^4+\frac {1}{25} \left (e^{2 x}+x^2\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.04, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-7500+e^{4 x}+4600 x+2600 x^2-19900 x^3+2501 x^4+2500 x^5+50 x^6+625 x^8+e^{2 x} \left (-300+100 x+2 x^2+50 x^4\right )}{2500+e^{4 x}+5000 x+2600 x^2+100 x^3+2501 x^4+2500 x^5+50 x^6+625 x^8+e^{2 x} \left (100+100 x+2 x^2+50 x^4\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-7500+e^{4 x}+4600 x+2600 x^2-19900 x^3+2501 x^4+2500 x^5+50 x^6+625 x^8+2 e^{2 x} \left (-150+50 x+x^2+25 x^4\right )}{\left (50+e^{2 x}+50 x+x^2+25 x^4\right )^2} \, dx\\ &=\int \left (1-\frac {400}{50+e^{2 x}+50 x+x^2+25 x^4}+\frac {400 \left (25+49 x+x^2-50 x^3+25 x^4\right )}{\left (50+e^{2 x}+50 x+x^2+25 x^4\right )^2}\right ) \, dx\\ &=x-400 \int \frac {1}{50+e^{2 x}+50 x+x^2+25 x^4} \, dx+400 \int \frac {25+49 x+x^2-50 x^3+25 x^4}{\left (50+e^{2 x}+50 x+x^2+25 x^4\right )^2} \, dx\\ &=x-400 \int \frac {1}{50+e^{2 x}+50 x+x^2+25 x^4} \, dx+400 \int \left (\frac {25}{\left (50+e^{2 x}+50 x+x^2+25 x^4\right )^2}+\frac {49 x}{\left (50+e^{2 x}+50 x+x^2+25 x^4\right )^2}+\frac {x^2}{\left (50+e^{2 x}+50 x+x^2+25 x^4\right )^2}-\frac {50 x^3}{\left (50+e^{2 x}+50 x+x^2+25 x^4\right )^2}+\frac {25 x^4}{\left (50+e^{2 x}+50 x+x^2+25 x^4\right )^2}\right ) \, dx\\ &=x+400 \int \frac {x^2}{\left (50+e^{2 x}+50 x+x^2+25 x^4\right )^2} \, dx-400 \int \frac {1}{50+e^{2 x}+50 x+x^2+25 x^4} \, dx+10000 \int \frac {1}{\left (50+e^{2 x}+50 x+x^2+25 x^4\right )^2} \, dx+10000 \int \frac {x^4}{\left (50+e^{2 x}+50 x+x^2+25 x^4\right )^2} \, dx+19600 \int \frac {x}{\left (50+e^{2 x}+50 x+x^2+25 x^4\right )^2} \, dx-20000 \int \frac {x^3}{\left (50+e^{2 x}+50 x+x^2+25 x^4\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 24, normalized size = 0.89 \begin {gather*} x+\frac {200}{50+e^{2 x}+50 x+x^2+25 x^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.03, size = 44, normalized size = 1.63 \begin {gather*} \frac {25 \, x^{5} + x^{3} + 50 \, x^{2} + x e^{\left (2 \, x\right )} + 50 \, x + 200}{25 \, x^{4} + x^{2} + 50 \, x + e^{\left (2 \, x\right )} + 50} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 44, normalized size = 1.63 \begin {gather*} \frac {25 \, x^{5} + x^{3} + 50 \, x^{2} + x e^{\left (2 \, x\right )} + 50 \, x + 200}{25 \, x^{4} + x^{2} + 50 \, x + e^{\left (2 \, x\right )} + 50} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 24, normalized size = 0.89
method | result | size |
risch | \(x +\frac {200}{25 x^{4}+{\mathrm e}^{2 x}+x^{2}+50 x +50}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 44, normalized size = 1.63 \begin {gather*} \frac {25 \, x^{5} + x^{3} + 50 \, x^{2} + x e^{\left (2 \, x\right )} + 50 \, x + 200}{25 \, x^{4} + x^{2} + 50 \, x + e^{\left (2 \, x\right )} + 50} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.54, size = 23, normalized size = 0.85 \begin {gather*} x+\frac {200}{50\,x+{\mathrm {e}}^{2\,x}+x^2+25\,x^4+50} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 20, normalized size = 0.74 \begin {gather*} x + \frac {200}{25 x^{4} + x^{2} + 50 x + e^{2 x} + 50} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________