Optimal. Leaf size=28 \[ \frac {1}{9} x^2 \log ^2\left (x^2\right )+\frac {1}{15} \left (-1+\frac {\log \left (x^2\right )}{x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 44, normalized size of antiderivative = 1.57, number of steps used = 7, number of rules used = 5, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.156, Rules used = {12, 14, 2334, 2305, 2304} \begin {gather*} \frac {1}{9} x^2 \log ^2\left (x^2\right )-\frac {2}{9} x^2 \log \left (x^2\right )+\frac {1}{45} \left (10 x^2+\frac {3}{x}\right ) \log \left (x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2304
Rule 2305
Rule 2334
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{45} \int \frac {6+\left (-3+20 x^3\right ) \log \left (x^2\right )+10 x^3 \log ^2\left (x^2\right )}{x^2} \, dx\\ &=\frac {1}{45} \int \left (\frac {6}{x^2}+\frac {\left (-3+20 x^3\right ) \log \left (x^2\right )}{x^2}+10 x \log ^2\left (x^2\right )\right ) \, dx\\ &=-\frac {2}{15 x}+\frac {1}{45} \int \frac {\left (-3+20 x^3\right ) \log \left (x^2\right )}{x^2} \, dx+\frac {2}{9} \int x \log ^2\left (x^2\right ) \, dx\\ &=-\frac {2}{15 x}+\frac {1}{45} \left (\frac {3}{x}+10 x^2\right ) \log \left (x^2\right )+\frac {1}{9} x^2 \log ^2\left (x^2\right )-\frac {2}{45} \int \left (\frac {3}{x^2}+10 x\right ) \, dx-\frac {4}{9} \int x \log \left (x^2\right ) \, dx\\ &=-\frac {2}{9} x^2 \log \left (x^2\right )+\frac {1}{45} \left (\frac {3}{x}+10 x^2\right ) \log \left (x^2\right )+\frac {1}{9} x^2 \log ^2\left (x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 25, normalized size = 0.89 \begin {gather*} \frac {\log \left (x^2\right )}{15 x}+\frac {1}{9} x^2 \log ^2\left (x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.08, size = 23, normalized size = 0.82 \begin {gather*} \frac {5 \, x^{3} \log \left (x^{2}\right )^{2} + 3 \, \log \left (x^{2}\right )}{45 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 21, normalized size = 0.75 \begin {gather*} \frac {1}{9} \, x^{2} \log \left (x^{2}\right )^{2} + \frac {\log \left (x^{2}\right )}{15 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 22, normalized size = 0.79
method | result | size |
default | \(\frac {\ln \left (x^{2}\right )}{15 x}+\frac {x^{2} \ln \left (x^{2}\right )^{2}}{9}\) | \(22\) |
risch | \(\frac {\ln \left (x^{2}\right )}{15 x}+\frac {x^{2} \ln \left (x^{2}\right )^{2}}{9}\) | \(22\) |
norman | \(\frac {\frac {x^{3} \ln \left (x^{2}\right )^{2}}{9}+\frac {\ln \left (x^{2}\right )}{15}}{x}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 21, normalized size = 0.75 \begin {gather*} \frac {1}{9} \, x^{2} \log \left (x^{2}\right )^{2} + \frac {\log \left (x^{2}\right )}{15 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.70, size = 20, normalized size = 0.71 \begin {gather*} \frac {\ln \left (x^2\right )\,\left (5\,x^3\,\ln \left (x^2\right )+3\right )}{45\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 19, normalized size = 0.68 \begin {gather*} \frac {x^{2} \log {\left (x^{2} \right )}^{2}}{9} + \frac {\log {\left (x^{2} \right )}}{15 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________