Optimal. Leaf size=17 \[ 4^{\frac {2}{1+x}}+e^{\frac {33}{16}+x} \]
________________________________________________________________________________________
Rubi [A] time = 0.25, antiderivative size = 26, normalized size of antiderivative = 1.53, number of steps used = 6, number of rules used = 5, integrand size = 47, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.106, Rules used = {27, 6742, 2194, 2230, 2209} \begin {gather*} e^{x+\frac {33}{16}}+\frac {2^{\frac {4}{x+1}-1} \log (4)}{\log (2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 2194
Rule 2209
Rule 2230
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {1}{16} (33+16 x)} \left (1+2 x+x^2\right )-2^{1+\frac {4}{1+x}} \log (4)}{(1+x)^2} \, dx\\ &=\int \left (e^{\frac {33}{16}+x}-\frac {2^{\frac {5+x}{1+x}} \log (4)}{(1+x)^2}\right ) \, dx\\ &=-\left (\log (4) \int \frac {2^{\frac {5+x}{1+x}}}{(1+x)^2} \, dx\right )+\int e^{\frac {33}{16}+x} \, dx\\ &=e^{\frac {33}{16}+x}-\log (4) \int \frac {2^{1+\frac {4}{1+x}}}{(1+x)^2} \, dx\\ &=e^{\frac {33}{16}+x}+\frac {2^{-1+\frac {4}{1+x}} \log (4)}{\log (2)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 15, normalized size = 0.88 \begin {gather*} 16^{\frac {1}{1+x}}+e^{\frac {33}{16}+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.94, size = 14, normalized size = 0.82 \begin {gather*} 2^{\frac {4}{x + 1}} + e^{\left (x + \frac {33}{16}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 14, normalized size = 0.82 \begin {gather*} 2^{\frac {4}{x + 1}} + e^{\left (x + \frac {33}{16}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 15, normalized size = 0.88
method | result | size |
risch | \(4^{\frac {2}{x +1}}+{\mathrm e}^{x +\frac {33}{16}}\) | \(15\) |
norman | \(\frac {{\mathrm e}^{\frac {4 \ln \relax (2)}{x +1}}+x \,{\mathrm e}^{\frac {4 \ln \relax (2)}{x +1}}+{\mathrm e}^{x +\frac {33}{16}} x +{\mathrm e}^{x +\frac {33}{16}}}{x +1}\) | \(44\) |
default | \({\mathrm e}^{\frac {33}{16}} \left (-\frac {{\mathrm e}^{x}}{x +1}-{\mathrm e}^{-1} \expIntegralEi \left (1, -x -1\right )\right )+{\mathrm e}^{\frac {33}{16}} \left ({\mathrm e}^{x}-\frac {{\mathrm e}^{x}}{x +1}+{\mathrm e}^{-1} \expIntegralEi \left (1, -x -1\right )\right )+\frac {{\mathrm e}^{\frac {4 \ln \relax (2)}{x +1}}+x \,{\mathrm e}^{\frac {4 \ln \relax (2)}{x +1}}}{x +1}+\frac {2 \,{\mathrm e}^{\frac {33}{16}} {\mathrm e}^{x}}{x +1}\) | \(93\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {e^{\frac {17}{16}} E_{2}\left (-x - 1\right )}{x + 1} + \frac {x^{2} e^{\left (x + \frac {33}{16}\right )} + {\left (x^{2} + 2 \, x + 1\right )} 2^{\frac {4}{x + 1}}}{x^{2} + 2 \, x + 1} + \frac {2 \, e^{\left (x + \frac {33}{16}\right )}}{x + 1} - 2 \, \int \frac {x e^{\left (x + \frac {33}{16}\right )}}{x^{3} + 3 \, x^{2} + 3 \, x + 1}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.62, size = 15, normalized size = 0.88 \begin {gather*} {\mathrm {e}}^{33/16}\,{\mathrm {e}}^x+2^{\frac {4}{x+1}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.43, size = 15, normalized size = 0.88 \begin {gather*} e^{\frac {4 \log {\relax (2 )}}{x + 1}} + e^{x + \frac {33}{16}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________