Optimal. Leaf size=30 \[ 5-x+x \left (-e^x-x+\frac {3}{\log \left (\frac {3}{\log (x+\log (x))}\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.47, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {3+3 x+(3 x+3 \log (x)) \log (x+\log (x)) \log \left (\frac {3}{\log (x+\log (x))}\right )+\left (-x-2 x^2+e^x \left (-x-x^2\right )+\left (-1+e^x (-1-x)-2 x\right ) \log (x)\right ) \log (x+\log (x)) \log ^2\left (\frac {3}{\log (x+\log (x))}\right )}{(x+\log (x)) \log (x+\log (x)) \log ^2\left (\frac {3}{\log (x+\log (x))}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3+3 x+3 (x+\log (x)) \log (x+\log (x)) \log \left (\frac {3}{\log (x+\log (x))}\right )-\left (1+2 x+e^x (1+x)\right ) (x+\log (x)) \log (x+\log (x)) \log ^2\left (\frac {3}{\log (x+\log (x))}\right )}{(x+\log (x)) \log (x+\log (x)) \log ^2\left (\frac {3}{\log (x+\log (x))}\right )} \, dx\\ &=\int \left (-e^x (1+x)+\frac {3+3 x+3 x \log (x+\log (x)) \log \left (\frac {3}{\log (x+\log (x))}\right )+3 \log (x) \log (x+\log (x)) \log \left (\frac {3}{\log (x+\log (x))}\right )-x \log (x+\log (x)) \log ^2\left (\frac {3}{\log (x+\log (x))}\right )-2 x^2 \log (x+\log (x)) \log ^2\left (\frac {3}{\log (x+\log (x))}\right )-\log (x) \log (x+\log (x)) \log ^2\left (\frac {3}{\log (x+\log (x))}\right )-2 x \log (x) \log (x+\log (x)) \log ^2\left (\frac {3}{\log (x+\log (x))}\right )}{(x+\log (x)) \log (x+\log (x)) \log ^2\left (\frac {3}{\log (x+\log (x))}\right )}\right ) \, dx\\ &=-\int e^x (1+x) \, dx+\int \frac {3+3 x+3 x \log (x+\log (x)) \log \left (\frac {3}{\log (x+\log (x))}\right )+3 \log (x) \log (x+\log (x)) \log \left (\frac {3}{\log (x+\log (x))}\right )-x \log (x+\log (x)) \log ^2\left (\frac {3}{\log (x+\log (x))}\right )-2 x^2 \log (x+\log (x)) \log ^2\left (\frac {3}{\log (x+\log (x))}\right )-\log (x) \log (x+\log (x)) \log ^2\left (\frac {3}{\log (x+\log (x))}\right )-2 x \log (x) \log (x+\log (x)) \log ^2\left (\frac {3}{\log (x+\log (x))}\right )}{(x+\log (x)) \log (x+\log (x)) \log ^2\left (\frac {3}{\log (x+\log (x))}\right )} \, dx\\ &=-e^x (1+x)+\int e^x \, dx+\int \frac {\frac {3 (1+x)}{(x+\log (x)) \log (x+\log (x))}-\log \left (\frac {3}{\log (x+\log (x))}\right ) \left (-3+(1+2 x) \log \left (\frac {3}{\log (x+\log (x))}\right )\right )}{\log ^2\left (\frac {3}{\log (x+\log (x))}\right )} \, dx\\ &=e^x-e^x (1+x)+\int \left (-1-2 x+\frac {3 (1+x)}{(x+\log (x)) \log (x+\log (x)) \log ^2\left (\frac {3}{\log (x+\log (x))}\right )}+\frac {3}{\log \left (\frac {3}{\log (x+\log (x))}\right )}\right ) \, dx\\ &=e^x-x-x^2-e^x (1+x)+3 \int \frac {1+x}{(x+\log (x)) \log (x+\log (x)) \log ^2\left (\frac {3}{\log (x+\log (x))}\right )} \, dx+3 \int \frac {1}{\log \left (\frac {3}{\log (x+\log (x))}\right )} \, dx\\ &=e^x-x-x^2-e^x (1+x)+3 \int \left (\frac {1}{(x+\log (x)) \log (x+\log (x)) \log ^2\left (\frac {3}{\log (x+\log (x))}\right )}+\frac {x}{(x+\log (x)) \log (x+\log (x)) \log ^2\left (\frac {3}{\log (x+\log (x))}\right )}\right ) \, dx+3 \int \frac {1}{\log \left (\frac {3}{\log (x+\log (x))}\right )} \, dx\\ &=e^x-x-x^2-e^x (1+x)+3 \int \frac {1}{(x+\log (x)) \log (x+\log (x)) \log ^2\left (\frac {3}{\log (x+\log (x))}\right )} \, dx+3 \int \frac {x}{(x+\log (x)) \log (x+\log (x)) \log ^2\left (\frac {3}{\log (x+\log (x))}\right )} \, dx+3 \int \frac {1}{\log \left (\frac {3}{\log (x+\log (x))}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 26, normalized size = 0.87 \begin {gather*} x \left (-1-e^x-x+\frac {3}{\log \left (\frac {3}{\log (x+\log (x))}\right )}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.79, size = 38, normalized size = 1.27 \begin {gather*} -\frac {{\left (x^{2} + x e^{x} + x\right )} \log \left (\frac {3}{\log \left (x + \log \relax (x)\right )}\right ) - 3 \, x}{\log \left (\frac {3}{\log \left (x + \log \relax (x)\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.66, size = 66, normalized size = 2.20 \begin {gather*} -\frac {x^{2} \log \relax (3) + x e^{x} \log \relax (3) - x^{2} \log \left (\log \left (x + \log \relax (x)\right )\right ) - x e^{x} \log \left (\log \left (x + \log \relax (x)\right )\right ) + x \log \relax (3) - x \log \left (\log \left (x + \log \relax (x)\right )\right ) - 3 \, x}{\log \relax (3) - \log \left (\log \left (x + \log \relax (x)\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.43, size = 36, normalized size = 1.20
method | result | size |
risch | \(-x^{2}-{\mathrm e}^{x} x -x +\frac {6 i x}{2 i \ln \relax (3)-2 i \ln \left (\ln \left (x +\ln \relax (x )\right )\right )}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 51, normalized size = 1.70 \begin {gather*} -\frac {x^{2} \log \relax (3) + x e^{x} \log \relax (3) + x {\left (\log \relax (3) - 3\right )} - {\left (x^{2} + x e^{x} + x\right )} \log \left (\log \left (x + \log \relax (x)\right )\right )}{\log \relax (3) - \log \left (\log \left (x + \log \relax (x)\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.25, size = 204, normalized size = 6.80 \begin {gather*} \frac {3\,x+\frac {3\,x\,\ln \left (x+\ln \relax (x)\right )\,\ln \left (\frac {3}{\ln \left (x+\ln \relax (x)\right )}\right )\,\left (x+\ln \relax (x)\right )}{x+1}}{\ln \left (\frac {3}{\ln \left (x+\ln \relax (x)\right )}\right )}-\ln \left (x+\ln \relax (x)\right )\,\left (\ln \relax (x)\,\left (\frac {3\,\left (x^3+2\,x^2+x\right )}{x\,{\left (x+1\right )}^2}-\frac {3\,x^2+3\,x}{x\,{\left (x+1\right )}^2}\right )-\frac {3\,x^4+12\,x^3+12\,x^2+3\,x}{x\,{\left (x+1\right )}^2}+\frac {6\,x^4+12\,x^3+6\,x^2}{x\,{\left (x+1\right )}^2}+\frac {3\,\left (x^3+3\,x^2+2\,x\right )}{x\,{\left (x+1\right )}^2}-\frac {3\,x^2+3\,x}{x\,{\left (x+1\right )}^2}\right )-x-x\,{\mathrm {e}}^x-x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 3.08, size = 22, normalized size = 0.73 \begin {gather*} - x^{2} - x e^{x} - x + \frac {3 x}{\log {\left (\frac {3}{\log {\left (x + \log {\relax (x )} \right )}} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________