3.99.90 \(\int \frac {4-2 x+e^2 (2 x-x^2)+e^{\frac {x^2+\log ^2(\frac {2+e^2 x}{x})}{x}} (-2 x-4 x^2+e^2 (-x^2-2 x^3)+8 \log (\frac {2+e^2 x}{x})+(4+2 e^2 x) \log ^2(\frac {2+e^2 x}{x}))}{16+24 x+12 x^2+2 x^3+e^2 (8 x+12 x^2+6 x^3+x^4)+e^{\frac {3 (x^2+\log ^2(\frac {2+e^2 x}{x}))}{x}} (2 x^3+e^2 x^4)+e^{\frac {2 (x^2+\log ^2(\frac {2+e^2 x}{x}))}{x}} (12 x^2+6 x^3+e^2 (6 x^3+3 x^4))+e^{\frac {x^2+\log ^2(\frac {2+e^2 x}{x})}{x}} (24 x+24 x^2+6 x^3+e^2 (12 x^2+12 x^3+3 x^4))} \, dx\)

Optimal. Leaf size=31 \[ \frac {x}{\left (2+x+e^{x+\frac {\log ^2\left (\frac {2+e^2 x}{x}\right )}{x}} x\right )^2} \]

________________________________________________________________________________________

Rubi [F]  time = 34.19, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4-2 x+e^2 \left (2 x-x^2\right )+e^{\frac {x^2+\log ^2\left (\frac {2+e^2 x}{x}\right )}{x}} \left (-2 x-4 x^2+e^2 \left (-x^2-2 x^3\right )+8 \log \left (\frac {2+e^2 x}{x}\right )+\left (4+2 e^2 x\right ) \log ^2\left (\frac {2+e^2 x}{x}\right )\right )}{16+24 x+12 x^2+2 x^3+e^2 \left (8 x+12 x^2+6 x^3+x^4\right )+e^{\frac {3 \left (x^2+\log ^2\left (\frac {2+e^2 x}{x}\right )\right )}{x}} \left (2 x^3+e^2 x^4\right )+e^{\frac {2 \left (x^2+\log ^2\left (\frac {2+e^2 x}{x}\right )\right )}{x}} \left (12 x^2+6 x^3+e^2 \left (6 x^3+3 x^4\right )\right )+e^{\frac {x^2+\log ^2\left (\frac {2+e^2 x}{x}\right )}{x}} \left (24 x+24 x^2+6 x^3+e^2 \left (12 x^2+12 x^3+3 x^4\right )\right )} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Int[(4 - 2*x + E^2*(2*x - x^2) + E^((x^2 + Log[(2 + E^2*x)/x]^2)/x)*(-2*x - 4*x^2 + E^2*(-x^2 - 2*x^3) + 8*Log
[(2 + E^2*x)/x] + (4 + 2*E^2*x)*Log[(2 + E^2*x)/x]^2))/(16 + 24*x + 12*x^2 + 2*x^3 + E^2*(8*x + 12*x^2 + 6*x^3
 + x^4) + E^((3*(x^2 + Log[(2 + E^2*x)/x]^2))/x)*(2*x^3 + E^2*x^4) + E^((2*(x^2 + Log[(2 + E^2*x)/x]^2))/x)*(1
2*x^2 + 6*x^3 + E^2*(6*x^3 + 3*x^4)) + E^((x^2 + Log[(2 + E^2*x)/x]^2)/x)*(24*x + 24*x^2 + 6*x^3 + E^2*(12*x^2
 + 12*x^3 + 3*x^4))),x]

[Out]

(8*Defer[Int][(2 + x + E^(x + Log[E^2 + 2/x]^2/x)*x)^(-3), x])/E^4 - (8*(1 + E^2)*Defer[Int][(2 + x + E^(x + L
og[E^2 + 2/x]^2/x)*x)^(-3), x])/E^4 + (4*(2 + E^2)*Defer[Int][(2 + x + E^(x + Log[E^2 + 2/x]^2/x)*x)^(-3), x])
/E^2 + 4*(1 + E^(-2))*Defer[Int][x/(2 + x + E^(x + Log[E^2 + 2/x]^2/x)*x)^3, x] - (4*Defer[Int][x/(2 + x + E^(
x + Log[E^2 + 2/x]^2/x)*x)^3, x])/E^2 + 2*Defer[Int][x^2/(2 + x + E^(x + Log[E^2 + 2/x]^2/x)*x)^3, x] + 8*Defe
r[Int][1/((2 + E^2*x)*(2 + x + E^(x + Log[E^2 + 2/x]^2/x)*x)^3), x] - (16*Defer[Int][1/((2 + E^2*x)*(2 + x + E
^(x + Log[E^2 + 2/x]^2/x)*x)^3), x])/E^4 + (16*(1 + E^2)*Defer[Int][1/((2 + E^2*x)*(2 + x + E^(x + Log[E^2 + 2
/x]^2/x)*x)^3), x])/E^4 - (8*(2 + E^2)*Defer[Int][1/((2 + E^2*x)*(2 + x + E^(x + Log[E^2 + 2/x]^2/x)*x)^3), x]
)/E^2 + (4*Defer[Int][(2 + x + E^(x + Log[E^2 + 2/x]^2/x)*x)^(-2), x])/E^2 - ((4 + E^2)*Defer[Int][(2 + x + E^
(x + Log[E^2 + 2/x]^2/x)*x)^(-2), x])/E^2 - 2*Defer[Int][x/(2 + x + E^(x + Log[E^2 + 2/x]^2/x)*x)^2, x] - 2*De
fer[Int][1/((2 + E^2*x)*(2 + x + E^(x + Log[E^2 + 2/x]^2/x)*x)^2), x] - (8*Defer[Int][1/((2 + E^2*x)*(2 + x +
E^(x + Log[E^2 + 2/x]^2/x)*x)^2), x])/E^2 + (2*(4 + E^2)*Defer[Int][1/((2 + E^2*x)*(2 + x + E^(x + Log[E^2 + 2
/x]^2/x)*x)^2), x])/E^2 - 8*Defer[Int][Log[E^2 + 2/x]/(x*(2 + x + E^(x + Log[E^2 + 2/x]^2/x)*x)^3), x] - 8*Def
er[Int][Log[E^2 + 2/x]/((2 + E^2*x)*(2 + x + E^(x + Log[E^2 + 2/x]^2/x)*x)^3), x] + 8*E^2*Defer[Int][Log[E^2 +
 2/x]/((2 + E^2*x)*(2 + x + E^(x + Log[E^2 + 2/x]^2/x)*x)^3), x] + 4*Defer[Int][Log[E^2 + 2/x]/(x*(2 + x + E^(
x + Log[E^2 + 2/x]^2/x)*x)^2), x] - 4*E^2*Defer[Int][Log[E^2 + 2/x]/((2 + E^2*x)*(2 + x + E^(x + Log[E^2 + 2/x
]^2/x)*x)^2), x] - 2*Defer[Int][Log[E^2 + 2/x]^2/(2 + x + E^(x + Log[E^2 + 2/x]^2/x)*x)^3, x] - 4*Defer[Int][L
og[E^2 + 2/x]^2/(x*(2 + x + E^(x + Log[E^2 + 2/x]^2/x)*x)^3), x] + 4*Defer[Int][Log[E^2 + 2/x]^2/((2 + E^2*x)*
(2 + x + E^(x + Log[E^2 + 2/x]^2/x)*x)^3), x] + 4*E^2*Defer[Int][Log[E^2 + 2/x]^2/((2 + E^2*x)*(2 + x + E^(x +
 Log[E^2 + 2/x]^2/x)*x)^3), x] - 4*(1 + E^2)*Defer[Int][Log[E^2 + 2/x]^2/((2 + E^2*x)*(2 + x + E^(x + Log[E^2
+ 2/x]^2/x)*x)^3), x] + 2*Defer[Int][Log[E^2 + 2/x]^2/(x*(2 + x + E^(x + Log[E^2 + 2/x]^2/x)*x)^2), x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-\left (\left (2+e^2 x\right ) \left (-2+x+e^{x+\frac {\log ^2\left (e^2+\frac {2}{x}\right )}{x}} x+2 e^{x+\frac {\log ^2\left (e^2+\frac {2}{x}\right )}{x}} x^2\right )\right )+8 e^{x+\frac {\log ^2\left (e^2+\frac {2}{x}\right )}{x}} \log \left (e^2+\frac {2}{x}\right )+2 e^{x+\frac {\log ^2\left (e^2+\frac {2}{x}\right )}{x}} \left (2+e^2 x\right ) \log ^2\left (e^2+\frac {2}{x}\right )}{\left (2+e^2 x\right ) \left (2+x+e^{x+\frac {\log ^2\left (e^2+\frac {2}{x}\right )}{x}} x\right )^3} \, dx\\ &=\int \left (\frac {-2 x-4 \left (1+\frac {e^2}{4}\right ) x^2-2 e^2 x^3+8 \log \left (e^2+\frac {2}{x}\right )+4 \log ^2\left (e^2+\frac {2}{x}\right )+2 e^2 x \log ^2\left (e^2+\frac {2}{x}\right )}{x \left (2+e^2 x\right ) \left (2+x+e^{x+\frac {\log ^2\left (e^2+\frac {2}{x}\right )}{x}} x\right )^2}+\frac {2 \left (4 x+4 \left (1+\frac {e^2}{2}\right ) x^2+2 \left (1+e^2\right ) x^3+e^2 x^4-8 \log \left (e^2+\frac {2}{x}\right )-4 x \log \left (e^2+\frac {2}{x}\right )-4 \log ^2\left (e^2+\frac {2}{x}\right )-2 \left (1+e^2\right ) x \log ^2\left (e^2+\frac {2}{x}\right )-e^2 x^2 \log ^2\left (e^2+\frac {2}{x}\right )\right )}{x \left (2+e^2 x\right ) \left (2+x+e^{x+\frac {\log ^2\left (e^2+\frac {2}{x}\right )}{x}} x\right )^3}\right ) \, dx\\ &=2 \int \frac {4 x+4 \left (1+\frac {e^2}{2}\right ) x^2+2 \left (1+e^2\right ) x^3+e^2 x^4-8 \log \left (e^2+\frac {2}{x}\right )-4 x \log \left (e^2+\frac {2}{x}\right )-4 \log ^2\left (e^2+\frac {2}{x}\right )-2 \left (1+e^2\right ) x \log ^2\left (e^2+\frac {2}{x}\right )-e^2 x^2 \log ^2\left (e^2+\frac {2}{x}\right )}{x \left (2+e^2 x\right ) \left (2+x+e^{x+\frac {\log ^2\left (e^2+\frac {2}{x}\right )}{x}} x\right )^3} \, dx+\int \frac {-2 x-4 \left (1+\frac {e^2}{4}\right ) x^2-2 e^2 x^3+8 \log \left (e^2+\frac {2}{x}\right )+4 \log ^2\left (e^2+\frac {2}{x}\right )+2 e^2 x \log ^2\left (e^2+\frac {2}{x}\right )}{x \left (2+e^2 x\right ) \left (2+x+e^{x+\frac {\log ^2\left (e^2+\frac {2}{x}\right )}{x}} x\right )^2} \, dx\\ &=2 \int \frac {x \left (2+e^2 x\right ) \left (2+2 x+x^2\right )-4 (2+x) \log \left (e^2+\frac {2}{x}\right )-(2+x) \left (2+e^2 x\right ) \log ^2\left (e^2+\frac {2}{x}\right )}{x \left (2+e^2 x\right ) \left (2+x+e^{x+\frac {\log ^2\left (e^2+\frac {2}{x}\right )}{x}} x\right )^3} \, dx+\int \frac {-x (1+2 x) \left (2+e^2 x\right )+8 \log \left (e^2+\frac {2}{x}\right )+2 \left (2+e^2 x\right ) \log ^2\left (e^2+\frac {2}{x}\right )}{x \left (2+e^2 x\right ) \left (2+x+e^{x+\frac {\log ^2\left (e^2+\frac {2}{x}\right )}{x}} x\right )^2} \, dx\\ &=2 \int \left (\frac {4 x+4 \left (1+\frac {e^2}{2}\right ) x^2+2 \left (1+e^2\right ) x^3+e^2 x^4-8 \log \left (e^2+\frac {2}{x}\right )-4 x \log \left (e^2+\frac {2}{x}\right )-4 \log ^2\left (e^2+\frac {2}{x}\right )-2 \left (1+e^2\right ) x \log ^2\left (e^2+\frac {2}{x}\right )-e^2 x^2 \log ^2\left (e^2+\frac {2}{x}\right )}{2 x \left (2+x+e^{x+\frac {\log ^2\left (e^2+\frac {2}{x}\right )}{x}} x\right )^3}+\frac {e^2 \left (-4 x-4 \left (1+\frac {e^2}{2}\right ) x^2-2 \left (1+e^2\right ) x^3-e^2 x^4+8 \log \left (e^2+\frac {2}{x}\right )+4 x \log \left (e^2+\frac {2}{x}\right )+4 \log ^2\left (e^2+\frac {2}{x}\right )+2 \left (1+e^2\right ) x \log ^2\left (e^2+\frac {2}{x}\right )+e^2 x^2 \log ^2\left (e^2+\frac {2}{x}\right )\right )}{2 \left (2+e^2 x\right ) \left (2+x+e^{x+\frac {\log ^2\left (e^2+\frac {2}{x}\right )}{x}} x\right )^3}\right ) \, dx+\int \left (\frac {e^2 \left (2 x+4 \left (1+\frac {e^2}{4}\right ) x^2+2 e^2 x^3-8 \log \left (e^2+\frac {2}{x}\right )-4 \log ^2\left (e^2+\frac {2}{x}\right )-2 e^2 x \log ^2\left (e^2+\frac {2}{x}\right )\right )}{2 \left (2+e^2 x\right ) \left (2+x+e^{x+\frac {\log ^2\left (e^2+\frac {2}{x}\right )}{x}} x\right )^2}+\frac {-2 x-4 \left (1+\frac {e^2}{4}\right ) x^2-2 e^2 x^3+8 \log \left (e^2+\frac {2}{x}\right )+4 \log ^2\left (e^2+\frac {2}{x}\right )+2 e^2 x \log ^2\left (e^2+\frac {2}{x}\right )}{2 x \left (2+x+e^{x+\frac {\log ^2\left (e^2+\frac {2}{x}\right )}{x}} x\right )^2}\right ) \, dx\\ &=\frac {1}{2} \int \frac {-2 x-4 \left (1+\frac {e^2}{4}\right ) x^2-2 e^2 x^3+8 \log \left (e^2+\frac {2}{x}\right )+4 \log ^2\left (e^2+\frac {2}{x}\right )+2 e^2 x \log ^2\left (e^2+\frac {2}{x}\right )}{x \left (2+x+e^{x+\frac {\log ^2\left (e^2+\frac {2}{x}\right )}{x}} x\right )^2} \, dx+\frac {1}{2} e^2 \int \frac {2 x+4 \left (1+\frac {e^2}{4}\right ) x^2+2 e^2 x^3-8 \log \left (e^2+\frac {2}{x}\right )-4 \log ^2\left (e^2+\frac {2}{x}\right )-2 e^2 x \log ^2\left (e^2+\frac {2}{x}\right )}{\left (2+e^2 x\right ) \left (2+x+e^{x+\frac {\log ^2\left (e^2+\frac {2}{x}\right )}{x}} x\right )^2} \, dx+e^2 \int \frac {-4 x-4 \left (1+\frac {e^2}{2}\right ) x^2-2 \left (1+e^2\right ) x^3-e^2 x^4+8 \log \left (e^2+\frac {2}{x}\right )+4 x \log \left (e^2+\frac {2}{x}\right )+4 \log ^2\left (e^2+\frac {2}{x}\right )+2 \left (1+e^2\right ) x \log ^2\left (e^2+\frac {2}{x}\right )+e^2 x^2 \log ^2\left (e^2+\frac {2}{x}\right )}{\left (2+e^2 x\right ) \left (2+x+e^{x+\frac {\log ^2\left (e^2+\frac {2}{x}\right )}{x}} x\right )^3} \, dx+\int \frac {4 x+4 \left (1+\frac {e^2}{2}\right ) x^2+2 \left (1+e^2\right ) x^3+e^2 x^4-8 \log \left (e^2+\frac {2}{x}\right )-4 x \log \left (e^2+\frac {2}{x}\right )-4 \log ^2\left (e^2+\frac {2}{x}\right )-2 \left (1+e^2\right ) x \log ^2\left (e^2+\frac {2}{x}\right )-e^2 x^2 \log ^2\left (e^2+\frac {2}{x}\right )}{x \left (2+x+e^{x+\frac {\log ^2\left (e^2+\frac {2}{x}\right )}{x}} x\right )^3} \, dx\\ &=\frac {1}{2} \int \frac {-x (1+2 x) \left (2+e^2 x\right )+8 \log \left (e^2+\frac {2}{x}\right )+2 \left (2+e^2 x\right ) \log ^2\left (e^2+\frac {2}{x}\right )}{x \left (2+x+e^{x+\frac {\log ^2\left (e^2+\frac {2}{x}\right )}{x}} x\right )^2} \, dx+\frac {1}{2} e^2 \int \frac {x (1+2 x) \left (2+e^2 x\right )-8 \log \left (e^2+\frac {2}{x}\right )-2 \left (2+e^2 x\right ) \log ^2\left (e^2+\frac {2}{x}\right )}{\left (2+e^2 x\right ) \left (2+x+e^{x+\frac {\log ^2\left (e^2+\frac {2}{x}\right )}{x}} x\right )^2} \, dx+e^2 \int \frac {-x \left (2+e^2 x\right ) \left (2+2 x+x^2\right )+4 (2+x) \log \left (e^2+\frac {2}{x}\right )+(2+x) \left (2+e^2 x\right ) \log ^2\left (e^2+\frac {2}{x}\right )}{\left (2+e^2 x\right ) \left (2+x+e^{x+\frac {\log ^2\left (e^2+\frac {2}{x}\right )}{x}} x\right )^3} \, dx+\int \frac {x \left (2+e^2 x\right ) \left (2+2 x+x^2\right )-4 (2+x) \log \left (e^2+\frac {2}{x}\right )-(2+x) \left (2+e^2 x\right ) \log ^2\left (e^2+\frac {2}{x}\right )}{x \left (2+x+e^{x+\frac {\log ^2\left (e^2+\frac {2}{x}\right )}{x}} x\right )^3} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.23, size = 29, normalized size = 0.94 \begin {gather*} \frac {x}{\left (2+x+e^{x+\frac {\log ^2\left (e^2+\frac {2}{x}\right )}{x}} x\right )^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(4 - 2*x + E^2*(2*x - x^2) + E^((x^2 + Log[(2 + E^2*x)/x]^2)/x)*(-2*x - 4*x^2 + E^2*(-x^2 - 2*x^3) +
 8*Log[(2 + E^2*x)/x] + (4 + 2*E^2*x)*Log[(2 + E^2*x)/x]^2))/(16 + 24*x + 12*x^2 + 2*x^3 + E^2*(8*x + 12*x^2 +
 6*x^3 + x^4) + E^((3*(x^2 + Log[(2 + E^2*x)/x]^2))/x)*(2*x^3 + E^2*x^4) + E^((2*(x^2 + Log[(2 + E^2*x)/x]^2))
/x)*(12*x^2 + 6*x^3 + E^2*(6*x^3 + 3*x^4)) + E^((x^2 + Log[(2 + E^2*x)/x]^2)/x)*(24*x + 24*x^2 + 6*x^3 + E^2*(
12*x^2 + 12*x^3 + 3*x^4))),x]

[Out]

x/(2 + x + E^(x + Log[E^2 + 2/x]^2/x)*x)^2

________________________________________________________________________________________

fricas [B]  time = 0.54, size = 70, normalized size = 2.26 \begin {gather*} \frac {x}{x^{2} e^{\left (\frac {2 \, {\left (x^{2} + \log \left (\frac {x e^{2} + 2}{x}\right )^{2}\right )}}{x}\right )} + x^{2} + 2 \, {\left (x^{2} + 2 \, x\right )} e^{\left (\frac {x^{2} + \log \left (\frac {x e^{2} + 2}{x}\right )^{2}}{x}\right )} + 4 \, x + 4} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((2*exp(2)*x+4)*log((exp(2)*x+2)/x)^2+8*log((exp(2)*x+2)/x)+(-2*x^3-x^2)*exp(2)-4*x^2-2*x)*exp((log
((exp(2)*x+2)/x)^2+x^2)/x)+(-x^2+2*x)*exp(2)+4-2*x)/((x^4*exp(2)+2*x^3)*exp((log((exp(2)*x+2)/x)^2+x^2)/x)^3+(
(3*x^4+6*x^3)*exp(2)+6*x^3+12*x^2)*exp((log((exp(2)*x+2)/x)^2+x^2)/x)^2+((3*x^4+12*x^3+12*x^2)*exp(2)+6*x^3+24
*x^2+24*x)*exp((log((exp(2)*x+2)/x)^2+x^2)/x)+(x^4+6*x^3+12*x^2+8*x)*exp(2)+2*x^3+12*x^2+24*x+16),x, algorithm
="fricas")

[Out]

x/(x^2*e^(2*(x^2 + log((x*e^2 + 2)/x)^2)/x) + x^2 + 2*(x^2 + 2*x)*e^((x^2 + log((x*e^2 + 2)/x)^2)/x) + 4*x + 4
)

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((2*exp(2)*x+4)*log((exp(2)*x+2)/x)^2+8*log((exp(2)*x+2)/x)+(-2*x^3-x^2)*exp(2)-4*x^2-2*x)*exp((log
((exp(2)*x+2)/x)^2+x^2)/x)+(-x^2+2*x)*exp(2)+4-2*x)/((x^4*exp(2)+2*x^3)*exp((log((exp(2)*x+2)/x)^2+x^2)/x)^3+(
(3*x^4+6*x^3)*exp(2)+6*x^3+12*x^2)*exp((log((exp(2)*x+2)/x)^2+x^2)/x)^2+((3*x^4+12*x^3+12*x^2)*exp(2)+6*x^3+24
*x^2+24*x)*exp((log((exp(2)*x+2)/x)^2+x^2)/x)+(x^4+6*x^3+12*x^2+8*x)*exp(2)+2*x^3+12*x^2+24*x+16),x, algorithm
="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [A]  time = 0.08, size = 32, normalized size = 1.03




method result size



risch \(\frac {x}{\left (x \,{\mathrm e}^{\frac {\ln \left (\frac {{\mathrm e}^{2} x +2}{x}\right )^{2}+x^{2}}{x}}+x +2\right )^{2}}\) \(32\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((2*exp(2)*x+4)*ln((exp(2)*x+2)/x)^2+8*ln((exp(2)*x+2)/x)+(-2*x^3-x^2)*exp(2)-4*x^2-2*x)*exp((ln((exp(2)*
x+2)/x)^2+x^2)/x)+(-x^2+2*x)*exp(2)+4-2*x)/((x^4*exp(2)+2*x^3)*exp((ln((exp(2)*x+2)/x)^2+x^2)/x)^3+((3*x^4+6*x
^3)*exp(2)+6*x^3+12*x^2)*exp((ln((exp(2)*x+2)/x)^2+x^2)/x)^2+((3*x^4+12*x^3+12*x^2)*exp(2)+6*x^3+24*x^2+24*x)*
exp((ln((exp(2)*x+2)/x)^2+x^2)/x)+(x^4+6*x^3+12*x^2+8*x)*exp(2)+2*x^3+12*x^2+24*x+16),x,method=_RETURNVERBOSE)

[Out]

x/(x*exp((ln((exp(2)*x+2)/x)^2+x^2)/x)+x+2)^2

________________________________________________________________________________________

maxima [B]  time = 5.96, size = 123, normalized size = 3.97 \begin {gather*} \frac {x e^{\left (\frac {4 \, \log \left (x e^{2} + 2\right ) \log \relax (x)}{x}\right )}}{x^{2} e^{\left (2 \, x + \frac {2 \, \log \left (x e^{2} + 2\right )^{2}}{x} + \frac {2 \, \log \relax (x)^{2}}{x}\right )} + 2 \, {\left (x^{2} + 2 \, x\right )} e^{\left (x + \frac {\log \left (x e^{2} + 2\right )^{2}}{x} + \frac {2 \, \log \left (x e^{2} + 2\right ) \log \relax (x)}{x} + \frac {\log \relax (x)^{2}}{x}\right )} + {\left (x^{2} + 4 \, x + 4\right )} e^{\left (\frac {4 \, \log \left (x e^{2} + 2\right ) \log \relax (x)}{x}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((2*exp(2)*x+4)*log((exp(2)*x+2)/x)^2+8*log((exp(2)*x+2)/x)+(-2*x^3-x^2)*exp(2)-4*x^2-2*x)*exp((log
((exp(2)*x+2)/x)^2+x^2)/x)+(-x^2+2*x)*exp(2)+4-2*x)/((x^4*exp(2)+2*x^3)*exp((log((exp(2)*x+2)/x)^2+x^2)/x)^3+(
(3*x^4+6*x^3)*exp(2)+6*x^3+12*x^2)*exp((log((exp(2)*x+2)/x)^2+x^2)/x)^2+((3*x^4+12*x^3+12*x^2)*exp(2)+6*x^3+24
*x^2+24*x)*exp((log((exp(2)*x+2)/x)^2+x^2)/x)+(x^4+6*x^3+12*x^2+8*x)*exp(2)+2*x^3+12*x^2+24*x+16),x, algorithm
="maxima")

[Out]

x*e^(4*log(x*e^2 + 2)*log(x)/x)/(x^2*e^(2*x + 2*log(x*e^2 + 2)^2/x + 2*log(x)^2/x) + 2*(x^2 + 2*x)*e^(x + log(
x*e^2 + 2)^2/x + 2*log(x*e^2 + 2)*log(x)/x + log(x)^2/x) + (x^2 + 4*x + 4)*e^(4*log(x*e^2 + 2)*log(x)/x))

________________________________________________________________________________________

mupad [B]  time = 7.34, size = 452, normalized size = 14.58 \begin {gather*} -\frac {{\left ({\mathrm {e}}^2\,x^2+2\,x\right )}^2\,\left (4\,x-8\,\ln \left (\frac {x\,{\mathrm {e}}^2+2}{x}\right )-4\,x\,\ln \left (\frac {x\,{\mathrm {e}}^2+2}{x}\right )-2\,x\,{\ln \left (\frac {x\,{\mathrm {e}}^2+2}{x}\right )}^2+2\,x^2\,{\mathrm {e}}^2+2\,x^3\,{\mathrm {e}}^2+x^4\,{\mathrm {e}}^2-4\,{\ln \left (\frac {x\,{\mathrm {e}}^2+2}{x}\right )}^2+4\,x^2+2\,x^3-x^2\,{\ln \left (\frac {x\,{\mathrm {e}}^2+2}{x}\right )}^2\,{\mathrm {e}}^2-2\,x\,{\ln \left (\frac {x\,{\mathrm {e}}^2+2}{x}\right )}^2\,{\mathrm {e}}^2\right )}{\left (x\,{\mathrm {e}}^2+2\right )\,\left ({\left (x+2\right )}^2+x^2\,{\mathrm {e}}^{2\,x+\frac {2\,{\ln \left (\frac {x\,{\mathrm {e}}^2+2}{x}\right )}^2}{x}}+2\,x\,{\mathrm {e}}^{x+\frac {{\ln \left (\frac {x\,{\mathrm {e}}^2+2}{x}\right )}^2}{x}}\,\left (x+2\right )\right )\,\left (16\,x\,\ln \left (\frac {x\,{\mathrm {e}}^2+2}{x}\right )+8\,x\,{\ln \left (\frac {x\,{\mathrm {e}}^2+2}{x}\right )}^2+8\,x^2\,\ln \left (\frac {x\,{\mathrm {e}}^2+2}{x}\right )-8\,x^3\,{\mathrm {e}}^2-8\,x^4\,{\mathrm {e}}^2-4\,x^5\,{\mathrm {e}}^2-2\,x^4\,{\mathrm {e}}^4-2\,x^5\,{\mathrm {e}}^4-x^6\,{\mathrm {e}}^4+4\,x^2\,{\ln \left (\frac {x\,{\mathrm {e}}^2+2}{x}\right )}^2-8\,x^2-8\,x^3-4\,x^4+8\,x^2\,{\ln \left (\frac {x\,{\mathrm {e}}^2+2}{x}\right )}^2\,{\mathrm {e}}^2+4\,x^3\,{\ln \left (\frac {x\,{\mathrm {e}}^2+2}{x}\right )}^2\,{\mathrm {e}}^2+2\,x^3\,{\ln \left (\frac {x\,{\mathrm {e}}^2+2}{x}\right )}^2\,{\mathrm {e}}^4+x^4\,{\ln \left (\frac {x\,{\mathrm {e}}^2+2}{x}\right )}^2\,{\mathrm {e}}^4+8\,x^2\,\ln \left (\frac {x\,{\mathrm {e}}^2+2}{x}\right )\,{\mathrm {e}}^2+4\,x^3\,\ln \left (\frac {x\,{\mathrm {e}}^2+2}{x}\right )\,{\mathrm {e}}^2\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(2*x - exp(2)*(2*x - x^2) + exp((log((x*exp(2) + 2)/x)^2 + x^2)/x)*(2*x - 8*log((x*exp(2) + 2)/x) + exp(2
)*(x^2 + 2*x^3) - log((x*exp(2) + 2)/x)^2*(2*x*exp(2) + 4) + 4*x^2) - 4)/(24*x + exp((3*(log((x*exp(2) + 2)/x)
^2 + x^2))/x)*(x^4*exp(2) + 2*x^3) + exp((2*(log((x*exp(2) + 2)/x)^2 + x^2))/x)*(exp(2)*(6*x^3 + 3*x^4) + 12*x
^2 + 6*x^3) + exp((log((x*exp(2) + 2)/x)^2 + x^2)/x)*(24*x + exp(2)*(12*x^2 + 12*x^3 + 3*x^4) + 24*x^2 + 6*x^3
) + exp(2)*(8*x + 12*x^2 + 6*x^3 + x^4) + 12*x^2 + 2*x^3 + 16),x)

[Out]

-((2*x + x^2*exp(2))^2*(4*x - 8*log((x*exp(2) + 2)/x) - 4*x*log((x*exp(2) + 2)/x) - 2*x*log((x*exp(2) + 2)/x)^
2 + 2*x^2*exp(2) + 2*x^3*exp(2) + x^4*exp(2) - 4*log((x*exp(2) + 2)/x)^2 + 4*x^2 + 2*x^3 - x^2*log((x*exp(2) +
 2)/x)^2*exp(2) - 2*x*log((x*exp(2) + 2)/x)^2*exp(2)))/((x*exp(2) + 2)*((x + 2)^2 + x^2*exp(2*x + (2*log((x*ex
p(2) + 2)/x)^2)/x) + 2*x*exp(x + log((x*exp(2) + 2)/x)^2/x)*(x + 2))*(16*x*log((x*exp(2) + 2)/x) + 8*x*log((x*
exp(2) + 2)/x)^2 + 8*x^2*log((x*exp(2) + 2)/x) - 8*x^3*exp(2) - 8*x^4*exp(2) - 4*x^5*exp(2) - 2*x^4*exp(4) - 2
*x^5*exp(4) - x^6*exp(4) + 4*x^2*log((x*exp(2) + 2)/x)^2 - 8*x^2 - 8*x^3 - 4*x^4 + 8*x^2*log((x*exp(2) + 2)/x)
^2*exp(2) + 4*x^3*log((x*exp(2) + 2)/x)^2*exp(2) + 2*x^3*log((x*exp(2) + 2)/x)^2*exp(4) + x^4*log((x*exp(2) +
2)/x)^2*exp(4) + 8*x^2*log((x*exp(2) + 2)/x)*exp(2) + 4*x^3*log((x*exp(2) + 2)/x)*exp(2)))

________________________________________________________________________________________

sympy [B]  time = 0.88, size = 61, normalized size = 1.97 \begin {gather*} \frac {x}{x^{2} e^{\frac {2 \left (x^{2} + \log {\left (\frac {x e^{2} + 2}{x} \right )}^{2}\right )}{x}} + x^{2} + 4 x + \left (2 x^{2} + 4 x\right ) e^{\frac {x^{2} + \log {\left (\frac {x e^{2} + 2}{x} \right )}^{2}}{x}} + 4} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((2*exp(2)*x+4)*ln((exp(2)*x+2)/x)**2+8*ln((exp(2)*x+2)/x)+(-2*x**3-x**2)*exp(2)-4*x**2-2*x)*exp((l
n((exp(2)*x+2)/x)**2+x**2)/x)+(-x**2+2*x)*exp(2)+4-2*x)/((x**4*exp(2)+2*x**3)*exp((ln((exp(2)*x+2)/x)**2+x**2)
/x)**3+((3*x**4+6*x**3)*exp(2)+6*x**3+12*x**2)*exp((ln((exp(2)*x+2)/x)**2+x**2)/x)**2+((3*x**4+12*x**3+12*x**2
)*exp(2)+6*x**3+24*x**2+24*x)*exp((ln((exp(2)*x+2)/x)**2+x**2)/x)+(x**4+6*x**3+12*x**2+8*x)*exp(2)+2*x**3+12*x
**2+24*x+16),x)

[Out]

x/(x**2*exp(2*(x**2 + log((x*exp(2) + 2)/x)**2)/x) + x**2 + 4*x + (2*x**2 + 4*x)*exp((x**2 + log((x*exp(2) + 2
)/x)**2)/x) + 4)

________________________________________________________________________________________