Optimal. Leaf size=25 \[ 3+2 x+\frac {e^{-4+5 x} (-2+3 (3+x) \log (2))}{x} \]
________________________________________________________________________________________
Rubi [C] time = 0.16, antiderivative size = 63, normalized size of antiderivative = 2.52, number of steps used = 8, number of rules used = 5, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.139, Rules used = {14, 2199, 2177, 2178, 2194} \begin {gather*} -\frac {5 (2-\log (512)) \text {Ei}(5 x)}{e^4}+\frac {5 (2-9 \log (2)) \text {Ei}(5 x)}{e^4}+2 x+3 e^{5 x-4} \log (2)-\frac {e^{5 x-4} (2-\log (512))}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2177
Rule 2178
Rule 2194
Rule 2199
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (2+\frac {e^{-4+5 x} \left (2-9 \log (2)+15 x^2 \log (2)-5 x (2-\log (512))\right )}{x^2}\right ) \, dx\\ &=2 x+\int \frac {e^{-4+5 x} \left (2-9 \log (2)+15 x^2 \log (2)-5 x (2-\log (512))\right )}{x^2} \, dx\\ &=2 x+\int \left (\frac {e^{-4+5 x} (2-9 \log (2))}{x^2}+15 e^{-4+5 x} \log (2)+\frac {5 e^{-4+5 x} (-2+\log (512))}{x}\right ) \, dx\\ &=2 x+(2-9 \log (2)) \int \frac {e^{-4+5 x}}{x^2} \, dx+(15 \log (2)) \int e^{-4+5 x} \, dx-(5 (2-\log (512))) \int \frac {e^{-4+5 x}}{x} \, dx\\ &=2 x+3 e^{-4+5 x} \log (2)-\frac {e^{-4+5 x} (2-\log (512))}{x}-\frac {5 \text {Ei}(5 x) (2-\log (512))}{e^4}+(5 (2-9 \log (2))) \int \frac {e^{-4+5 x}}{x} \, dx\\ &=2 x+\frac {5 \text {Ei}(5 x) (2-9 \log (2))}{e^4}+3 e^{-4+5 x} \log (2)-\frac {e^{-4+5 x} (2-\log (512))}{x}-\frac {5 \text {Ei}(5 x) (2-\log (512))}{e^4}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 34, normalized size = 1.36 \begin {gather*} 2 x+\frac {e^{-4+5 x} \left (15 x^2 \log (2)+x (-10+45 \log (2))\right )}{5 x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 26, normalized size = 1.04 \begin {gather*} \frac {2 \, x^{2} + {\left (3 \, {\left (x + 3\right )} \log \relax (2) - 2\right )} e^{\left (5 \, x - 4\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 37, normalized size = 1.48 \begin {gather*} \frac {{\left (2 \, x^{2} e^{4} + 3 \, x e^{\left (5 \, x\right )} \log \relax (2) + 9 \, e^{\left (5 \, x\right )} \log \relax (2) - 2 \, e^{\left (5 \, x\right )}\right )} e^{\left (-4\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 26, normalized size = 1.04
method | result | size |
risch | \(2 x +\frac {\left (3 x \ln \relax (2)+9 \ln \relax (2)-2\right ) {\mathrm e}^{5 x -4}}{x}\) | \(26\) |
norman | \(\frac {\left (9 \ln \relax (2)-2\right ) {\mathrm e}^{5 x -4}+2 x^{2}+3 \ln \relax (2) {\mathrm e}^{5 x -4} x}{x}\) | \(35\) |
derivativedivides | \(2 x -\frac {8}{5}-\frac {2 \,{\mathrm e}^{5 x -4}}{x}+\frac {9 \ln \relax (2) {\mathrm e}^{5 x -4}}{x}+3 \ln \relax (2) {\mathrm e}^{5 x -4}\) | \(40\) |
default | \(2 x -\frac {8}{5}-\frac {2 \,{\mathrm e}^{5 x -4}}{x}+\frac {9 \ln \relax (2) {\mathrm e}^{5 x -4}}{x}+3 \ln \relax (2) {\mathrm e}^{5 x -4}\) | \(40\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.42, size = 52, normalized size = 2.08 \begin {gather*} 45 \, {\rm Ei}\left (5 \, x\right ) e^{\left (-4\right )} \log \relax (2) - 45 \, e^{\left (-4\right )} \Gamma \left (-1, -5 \, x\right ) \log \relax (2) - 10 \, {\rm Ei}\left (5 \, x\right ) e^{\left (-4\right )} + 10 \, e^{\left (-4\right )} \Gamma \left (-1, -5 \, x\right ) + 3 \, e^{\left (5 \, x - 4\right )} \log \relax (2) + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.69, size = 27, normalized size = 1.08 \begin {gather*} 2\,x+{\mathrm {e}}^{5\,x-4}\,\ln \relax (8)+\frac {{\mathrm {e}}^{5\,x-4}\,\left (\ln \left (512\right )-2\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 24, normalized size = 0.96 \begin {gather*} 2 x + \frac {\left (3 x \log {\relax (2 )} - 2 + 9 \log {\relax (2 )}\right ) e^{5 x - 4}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________