Optimal. Leaf size=29 \[ 5 \left (6+x+\frac {x}{e^2}-x^2 (3+x)^2-x (x-\log (4))\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 28, normalized size of antiderivative = 0.97, number of steps used = 3, number of rules used = 1, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.031, Rules used = {12} \begin {gather*} -5 x^4-30 x^3-50 x^2+5 x+5 x \left (\frac {1}{e^2}+\log (4)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (5+e^2 \left (5-100 x-90 x^2-20 x^3\right )+5 e^2 \log (4)\right ) \, dx}{e^2}\\ &=5 x \left (\frac {1}{e^2}+\log (4)\right )+\int \left (5-100 x-90 x^2-20 x^3\right ) \, dx\\ &=5 x-50 x^2-30 x^3-5 x^4+5 x \left (\frac {1}{e^2}+\log (4)\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 28, normalized size = 0.97 \begin {gather*} 5 \left (x+\frac {x}{e^2}-10 x^2-6 x^3-x^4+x \log (4)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 34, normalized size = 1.17 \begin {gather*} 5 \, {\left (2 \, x e^{2} \log \relax (2) - {\left (x^{4} + 6 \, x^{3} + 10 \, x^{2} - x\right )} e^{2} + x\right )} e^{\left (-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 34, normalized size = 1.17 \begin {gather*} 5 \, {\left (2 \, x e^{2} \log \relax (2) - {\left (x^{4} + 6 \, x^{3} + 10 \, x^{2} - x\right )} e^{2} + x\right )} e^{\left (-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 30, normalized size = 1.03
method | result | size |
risch | \(-5 x^{4}-30 x^{3}+10 x \ln \relax (2)-50 x^{2}+5 x +5 x \,{\mathrm e}^{-2}\) | \(30\) |
norman | \(-50 x^{2}-30 x^{3}-5 x^{4}+5 \left (2 \,{\mathrm e}^{2} \ln \relax (2)+{\mathrm e}^{2}+1\right ) {\mathrm e}^{-2} x\) | \(34\) |
gosper | \(5 x \left (-x^{3} {\mathrm e}^{2}-6 x^{2} {\mathrm e}^{2}+2 \,{\mathrm e}^{2} \ln \relax (2)-10 \,{\mathrm e}^{2} x +{\mathrm e}^{2}+1\right ) {\mathrm e}^{-2}\) | \(37\) |
default | \({\mathrm e}^{-2} \left (10 x \,{\mathrm e}^{2} \ln \relax (2)+{\mathrm e}^{2} \left (-5 x^{4}-30 x^{3}-50 x^{2}+5 x \right )+5 x \right )\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 34, normalized size = 1.17 \begin {gather*} 5 \, {\left (2 \, x e^{2} \log \relax (2) - {\left (x^{4} + 6 \, x^{3} + 10 \, x^{2} - x\right )} e^{2} + x\right )} e^{\left (-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.05, size = 28, normalized size = 0.97 \begin {gather*} -5\,x^4-30\,x^3-50\,x^2+\left (5\,{\mathrm {e}}^{-2}+10\,\ln \relax (2)+5\right )\,x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.07, size = 34, normalized size = 1.17 \begin {gather*} - 5 x^{4} - 30 x^{3} - 50 x^{2} + \frac {x \left (5 + 5 e^{2} + 10 e^{2} \log {\relax (2 )}\right )}{e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________