Optimal. Leaf size=26 \[ 3+\frac {e}{x^2}+x-\log \left (5-\log \left (\frac {e^2}{3 x^2}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.33, antiderivative size = 22, normalized size of antiderivative = 0.85, number of steps used = 7, number of rules used = 5, integrand size = 57, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.088, Rules used = {2561, 6742, 14, 2302, 29} \begin {gather*} \frac {e}{x^2}-\log \left (3-\log \left (\frac {1}{3 x^2}\right )\right )+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 29
Rule 2302
Rule 2561
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {10 e+2 x^2-5 x^3+\left (-2 e+x^3\right ) \log \left (\frac {e^2}{3 x^2}\right )}{x^3 \left (-5+\log \left (\frac {e^2}{3 x^2}\right )\right )} \, dx\\ &=\int \left (\frac {-2 e+x^3}{x^3}+\frac {2}{x \left (-3+\log \left (\frac {1}{3 x^2}\right )\right )}\right ) \, dx\\ &=2 \int \frac {1}{x \left (-3+\log \left (\frac {1}{3 x^2}\right )\right )} \, dx+\int \frac {-2 e+x^3}{x^3} \, dx\\ &=\int \left (1-\frac {2 e}{x^3}\right ) \, dx-\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,-3+\log \left (\frac {1}{3 x^2}\right )\right )\\ &=\frac {e}{x^2}+x-\log \left (3-\log \left (\frac {1}{3 x^2}\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 22, normalized size = 0.85 \begin {gather*} \frac {e}{x^2}+x-\log \left (3-\log \left (\frac {1}{3 x^2}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.20, size = 26, normalized size = 1.00 \begin {gather*} \frac {x^{3} - x^{2} \log \left (\log \left (\frac {e^{2}}{3 \, x^{2}}\right ) - 5\right ) + e}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.50, size = 24, normalized size = 0.92 \begin {gather*} \frac {x^{3} - x^{2} \log \left (\log \left (3 \, x^{2}\right ) + 3\right ) + e}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 25, normalized size = 0.96
method | result | size |
norman | \(\frac {x^{3}+{\mathrm e}}{x^{2}}-\ln \left (\ln \left (\frac {{\mathrm e}^{2}}{3 x^{2}}\right )-5\right )\) | \(25\) |
risch | \(\frac {x^{3}+{\mathrm e}}{x^{2}}-\ln \left (\ln \left (\frac {{\mathrm e}^{2}}{3 x^{2}}\right )-5\right )\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.56, size = 22, normalized size = 0.85 \begin {gather*} \frac {x^{3} + e}{x^{2}} - \log \left (\frac {1}{2} \, \log \relax (3) + \log \relax (x) + \frac {3}{2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.87, size = 19, normalized size = 0.73 \begin {gather*} x-\ln \left (\ln \left (\frac {1}{3\,x^2}\right )-3\right )+\frac {\mathrm {e}}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 20, normalized size = 0.77 \begin {gather*} x - \log {\left (\log {\left (\frac {e^{2}}{3 x^{2}} \right )} - 5 \right )} + \frac {e}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________