Optimal. Leaf size=25 \[ 8-e^{5/x}+\frac {x}{3 \left (20+\frac {11 x}{5}\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.27, antiderivative size = 21, normalized size of antiderivative = 0.84, number of steps used = 6, number of rules used = 5, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.116, Rules used = {1594, 27, 12, 6742, 2209} \begin {gather*} -e^{5/x}-\frac {500}{33 (11 x+100)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 1594
Rule 2209
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {500 x^2+e^{5/x} \left (150000+33000 x+1815 x^2\right )}{x^2 \left (30000+6600 x+363 x^2\right )} \, dx\\ &=\int \frac {500 x^2+e^{5/x} \left (150000+33000 x+1815 x^2\right )}{3 x^2 (100+11 x)^2} \, dx\\ &=\frac {1}{3} \int \frac {500 x^2+e^{5/x} \left (150000+33000 x+1815 x^2\right )}{x^2 (100+11 x)^2} \, dx\\ &=\frac {1}{3} \int \left (\frac {15 e^{5/x}}{x^2}+\frac {500}{(100+11 x)^2}\right ) \, dx\\ &=-\frac {500}{33 (100+11 x)}+5 \int \frac {e^{5/x}}{x^2} \, dx\\ &=-e^{5/x}-\frac {500}{33 (100+11 x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 27, normalized size = 1.08 \begin {gather*} \frac {5}{3} \left (-\frac {3 e^{5/x}}{5}-\frac {100}{11 (100+11 x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 24, normalized size = 0.96 \begin {gather*} -\frac {33 \, {\left (11 \, x + 100\right )} e^{\frac {5}{x}} + 500}{33 \, {\left (11 \, x + 100\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 32, normalized size = 1.28 \begin {gather*} -\frac {\frac {300 \, e^{\frac {5}{x}}}{x} + 33 \, e^{\frac {5}{x}} - 5}{3 \, {\left (\frac {100}{x} + 11\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 17, normalized size = 0.68
method | result | size |
risch | \(-\frac {500}{363 \left (x +\frac {100}{11}\right )}-{\mathrm e}^{\frac {5}{x}}\) | \(17\) |
derivativedivides | \(\frac {5}{3 \left (\frac {100}{x}+11\right )}-{\mathrm e}^{\frac {5}{x}}\) | \(21\) |
default | \(\frac {5}{3 \left (\frac {100}{x}+11\right )}-{\mathrm e}^{\frac {5}{x}}\) | \(21\) |
norman | \(\frac {-\frac {500 x}{33}-100 x \,{\mathrm e}^{\frac {5}{x}}-11 x^{2} {\mathrm e}^{\frac {5}{x}}}{x \left (11 x +100\right )}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 18, normalized size = 0.72 \begin {gather*} -\frac {500}{33 \, {\left (11 \, x + 100\right )}} - e^{\frac {5}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.60, size = 18, normalized size = 0.72 \begin {gather*} -{\mathrm {e}}^{5/x}-\frac {500}{33\,\left (11\,x+100\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 12, normalized size = 0.48 \begin {gather*} - e^{\frac {5}{x}} - \frac {500}{363 x + 3300} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________