Optimal. Leaf size=28 \[ \frac {3}{\left (-13-x \left (4+e^5 \log (x)\right )\right ) \log ((-1+2 x) \log (2))} \]
________________________________________________________________________________________
Rubi [F] time = 6.15, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {78+24 x+6 e^5 x \log (x)+\left (-12+24 x+e^5 (-3+6 x)+e^5 (-3+6 x) \log (x)\right ) \log ((-1+2 x) \log (2))}{\left (-169+234 x+192 x^2+32 x^3+e^5 \left (-26 x+44 x^2+16 x^3\right ) \log (x)+e^{10} \left (-x^2+2 x^3\right ) \log ^2(x)\right ) \log ^2((-1+2 x) \log (2))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-78-24 x-6 e^5 x \log (x)-\left (-12+24 x+e^5 (-3+6 x)+e^5 (-3+6 x) \log (x)\right ) \log ((-1+2 x) \log (2))}{(1-2 x) \left (13+4 x+e^5 x \log (x)\right )^2 \log ^2(-\log (2)+2 x \log (2))} \, dx\\ &=\int \left (\frac {78}{(-1+2 x) \left (13+4 x+e^5 x \log (x)\right )^2 \log ^2(-\log (2)+2 x \log (2))}+\frac {24 x}{(-1+2 x) \left (13+4 x+e^5 x \log (x)\right )^2 \log ^2(-\log (2)+2 x \log (2))}+\frac {6 e^5 x \log (x)}{(-1+2 x) \left (13+4 x+e^5 x \log (x)\right )^2 \log ^2(-\log (2)+2 x \log (2))}+\frac {12 \left (1+\frac {e^5}{4}\right )}{(1-2 x) \left (13+4 x+e^5 x \log (x)\right )^2 \log (-\log (2)+2 x \log (2))}+\frac {24 \left (1+\frac {e^5}{4}\right ) x}{(-1+2 x) \left (13+4 x+e^5 x \log (x)\right )^2 \log (-\log (2)+2 x \log (2))}+\frac {3 e^5 \log (x)}{(1-2 x) \left (13+4 x+e^5 x \log (x)\right )^2 \log (-\log (2)+2 x \log (2))}+\frac {6 e^5 x \log (x)}{(-1+2 x) \left (13+4 x+e^5 x \log (x)\right )^2 \log (-\log (2)+2 x \log (2))}\right ) \, dx\\ &=24 \int \frac {x}{(-1+2 x) \left (13+4 x+e^5 x \log (x)\right )^2 \log ^2(-\log (2)+2 x \log (2))} \, dx+78 \int \frac {1}{(-1+2 x) \left (13+4 x+e^5 x \log (x)\right )^2 \log ^2(-\log (2)+2 x \log (2))} \, dx+\left (3 e^5\right ) \int \frac {\log (x)}{(1-2 x) \left (13+4 x+e^5 x \log (x)\right )^2 \log (-\log (2)+2 x \log (2))} \, dx+\left (6 e^5\right ) \int \frac {x \log (x)}{(-1+2 x) \left (13+4 x+e^5 x \log (x)\right )^2 \log ^2(-\log (2)+2 x \log (2))} \, dx+\left (6 e^5\right ) \int \frac {x \log (x)}{(-1+2 x) \left (13+4 x+e^5 x \log (x)\right )^2 \log (-\log (2)+2 x \log (2))} \, dx+\left (3 \left (4+e^5\right )\right ) \int \frac {1}{(1-2 x) \left (13+4 x+e^5 x \log (x)\right )^2 \log (-\log (2)+2 x \log (2))} \, dx+\left (6 \left (4+e^5\right )\right ) \int \frac {x}{(-1+2 x) \left (13+4 x+e^5 x \log (x)\right )^2 \log (-\log (2)+2 x \log (2))} \, dx\\ &=24 \int \left (\frac {1}{2 \left (13+4 x+e^5 x \log (x)\right )^2 \log ^2(-\log (2)+2 x \log (2))}+\frac {1}{2 (-1+2 x) \left (13+4 x+e^5 x \log (x)\right )^2 \log ^2(-\log (2)+2 x \log (2))}\right ) \, dx+78 \int \frac {1}{(-1+2 x) \left (13+4 x+e^5 x \log (x)\right )^2 \log ^2(-\log (2)+2 x \log (2))} \, dx+\left (3 e^5\right ) \int \frac {\log (x)}{(1-2 x) \left (13+4 x+e^5 x \log (x)\right )^2 \log (-\log (2)+2 x \log (2))} \, dx+\left (6 e^5\right ) \int \left (\frac {\log (x)}{2 \left (13+4 x+e^5 x \log (x)\right )^2 \log ^2(-\log (2)+2 x \log (2))}+\frac {\log (x)}{2 (-1+2 x) \left (13+4 x+e^5 x \log (x)\right )^2 \log ^2(-\log (2)+2 x \log (2))}\right ) \, dx+\left (6 e^5\right ) \int \left (\frac {\log (x)}{2 \left (13+4 x+e^5 x \log (x)\right )^2 \log (-\log (2)+2 x \log (2))}+\frac {\log (x)}{2 (-1+2 x) \left (13+4 x+e^5 x \log (x)\right )^2 \log (-\log (2)+2 x \log (2))}\right ) \, dx+\left (3 \left (4+e^5\right )\right ) \int \frac {1}{(1-2 x) \left (13+4 x+e^5 x \log (x)\right )^2 \log (-\log (2)+2 x \log (2))} \, dx+\left (6 \left (4+e^5\right )\right ) \int \left (\frac {1}{2 \left (13+4 x+e^5 x \log (x)\right )^2 \log (-\log (2)+2 x \log (2))}+\frac {1}{2 (-1+2 x) \left (13+4 x+e^5 x \log (x)\right )^2 \log (-\log (2)+2 x \log (2))}\right ) \, dx\\ &=12 \int \frac {1}{\left (13+4 x+e^5 x \log (x)\right )^2 \log ^2(-\log (2)+2 x \log (2))} \, dx+12 \int \frac {1}{(-1+2 x) \left (13+4 x+e^5 x \log (x)\right )^2 \log ^2(-\log (2)+2 x \log (2))} \, dx+78 \int \frac {1}{(-1+2 x) \left (13+4 x+e^5 x \log (x)\right )^2 \log ^2(-\log (2)+2 x \log (2))} \, dx+\left (3 e^5\right ) \int \frac {\log (x)}{\left (13+4 x+e^5 x \log (x)\right )^2 \log ^2(-\log (2)+2 x \log (2))} \, dx+\left (3 e^5\right ) \int \frac {\log (x)}{(-1+2 x) \left (13+4 x+e^5 x \log (x)\right )^2 \log ^2(-\log (2)+2 x \log (2))} \, dx+\left (3 e^5\right ) \int \frac {\log (x)}{\left (13+4 x+e^5 x \log (x)\right )^2 \log (-\log (2)+2 x \log (2))} \, dx+\left (3 e^5\right ) \int \frac {\log (x)}{(1-2 x) \left (13+4 x+e^5 x \log (x)\right )^2 \log (-\log (2)+2 x \log (2))} \, dx+\left (3 e^5\right ) \int \frac {\log (x)}{(-1+2 x) \left (13+4 x+e^5 x \log (x)\right )^2 \log (-\log (2)+2 x \log (2))} \, dx+\left (3 \left (4+e^5\right )\right ) \int \frac {1}{\left (13+4 x+e^5 x \log (x)\right )^2 \log (-\log (2)+2 x \log (2))} \, dx+\left (3 \left (4+e^5\right )\right ) \int \frac {1}{(1-2 x) \left (13+4 x+e^5 x \log (x)\right )^2 \log (-\log (2)+2 x \log (2))} \, dx+\left (3 \left (4+e^5\right )\right ) \int \frac {1}{(-1+2 x) \left (13+4 x+e^5 x \log (x)\right )^2 \log (-\log (2)+2 x \log (2))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 28, normalized size = 1.00 \begin {gather*} \frac {3}{\left (-13-4 x-e^5 x \log (x)\right ) \log ((-1+2 x) \log (2))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.92, size = 26, normalized size = 0.93 \begin {gather*} -\frac {3}{{\left (x e^{5} \log \relax (x) + 4 \, x + 13\right )} \log \left ({\left (2 \, x - 1\right )} \log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.49, size = 49, normalized size = 1.75 \begin {gather*} -\frac {3}{x e^{5} \log \left (2 \, x \log \relax (2) - \log \relax (2)\right ) \log \relax (x) + 4 \, x \log \left (2 \, x \log \relax (2) - \log \relax (2)\right ) + 13 \, \log \left (2 \, x \log \relax (2) - \log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 27, normalized size = 0.96
method | result | size |
risch | \(-\frac {3}{\left (x \,{\mathrm e}^{5} \ln \relax (x )+4 x +13\right ) \ln \left (\left (2 x -1\right ) \ln \relax (2)\right )}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.59, size = 43, normalized size = 1.54 \begin {gather*} -\frac {3}{x e^{5} \log \relax (x) \log \left (\log \relax (2)\right ) + {\left (x e^{5} \log \relax (x) + 4 \, x + 13\right )} \log \left (2 \, x - 1\right ) + 4 \, x \log \left (\log \relax (2)\right ) + 13 \, \log \left (\log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {24\,x+\ln \left (\ln \relax (2)\,\left (2\,x-1\right )\right )\,\left (24\,x+{\mathrm {e}}^5\,\left (6\,x-3\right )+{\mathrm {e}}^5\,\ln \relax (x)\,\left (6\,x-3\right )-12\right )+6\,x\,{\mathrm {e}}^5\,\ln \relax (x)+78}{{\ln \left (\ln \relax (2)\,\left (2\,x-1\right )\right )}^2\,\left (234\,x+192\,x^2+32\,x^3+{\mathrm {e}}^5\,\ln \relax (x)\,\left (16\,x^3+44\,x^2-26\,x\right )-{\mathrm {e}}^{10}\,{\ln \relax (x)}^2\,\left (x^2-2\,x^3\right )-169\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.38, size = 26, normalized size = 0.93 \begin {gather*} - \frac {3}{\left (x e^{5} \log {\relax (x )} + 4 x + 13\right ) \log {\left (\left (2 x - 1\right ) \log {\relax (2 )} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________